Which group is this quotient group isomorphic to?












0












$begingroup$



Let $$G = left{begin{pmatrix} q&0\a+bi&qend{pmatrix} mid q in mathbb{Q}^ast, a,binmathbb{R}right}$$
and $$H = left{begin{pmatrix} q&0\a+ai&qend{pmatrix} mid q in mathbb{Q},q>0, ainmathbb{R}right}$$
Which known group is the quotient group $(G, ·)/H$ isomorphic to?




I don't know how to solve this. What I've tried:



$A,B in G$ belong to the same coset iff $A^{-1}B in H$.
Let $A = begin{pmatrix} q&0\a+bi&qend{pmatrix}$ and $B = begin{pmatrix} r&0\c+di&rend{pmatrix}$. Then $A^{-1} = begin{pmatrix} 1/q&0\(-a-bi)/q^2&1/qend{pmatrix}$ and $A^{-1}B = begin{pmatrix} r/q&0\frac{qc-ra+i(qd-rb)}{q^2}&r/qend{pmatrix}$



That means that $qc-ra$ should be equal to $qd-rb$. But I don't know how to move from here. Can anyone point me in the right direction or tell me what I'm doing wrong?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I'm assuming that definition of $B$ is a typo?
    $endgroup$
    – user3482749
    Jan 19 at 18:29










  • $begingroup$
    "That means that qc−ra should be equal to qd−rb." Not unless you think $G/H$ is trivial (which it clearly isn't).
    $endgroup$
    – user3482749
    Jan 19 at 18:30










  • $begingroup$
    Yes B was a typo, edited the question
    $endgroup$
    – Mathis
    Jan 19 at 18:32










  • $begingroup$
    @user3482749 "Not unless you think G/H is trivial" can you explain?
    $endgroup$
    – Mathis
    Jan 19 at 18:55










  • $begingroup$
    If you could prove, just from what you've got so far, that $qc - ra = qd - rb$, then you would have that $A^{-1}Bin H$ for all $A$ and $B$, hence $G/H$ would be trivial. That isn't the case, so that isn't going to be a useful line of enquiry.
    $endgroup$
    – user3482749
    Jan 19 at 19:08
















0












$begingroup$



Let $$G = left{begin{pmatrix} q&0\a+bi&qend{pmatrix} mid q in mathbb{Q}^ast, a,binmathbb{R}right}$$
and $$H = left{begin{pmatrix} q&0\a+ai&qend{pmatrix} mid q in mathbb{Q},q>0, ainmathbb{R}right}$$
Which known group is the quotient group $(G, ·)/H$ isomorphic to?




I don't know how to solve this. What I've tried:



$A,B in G$ belong to the same coset iff $A^{-1}B in H$.
Let $A = begin{pmatrix} q&0\a+bi&qend{pmatrix}$ and $B = begin{pmatrix} r&0\c+di&rend{pmatrix}$. Then $A^{-1} = begin{pmatrix} 1/q&0\(-a-bi)/q^2&1/qend{pmatrix}$ and $A^{-1}B = begin{pmatrix} r/q&0\frac{qc-ra+i(qd-rb)}{q^2}&r/qend{pmatrix}$



That means that $qc-ra$ should be equal to $qd-rb$. But I don't know how to move from here. Can anyone point me in the right direction or tell me what I'm doing wrong?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I'm assuming that definition of $B$ is a typo?
    $endgroup$
    – user3482749
    Jan 19 at 18:29










  • $begingroup$
    "That means that qc−ra should be equal to qd−rb." Not unless you think $G/H$ is trivial (which it clearly isn't).
    $endgroup$
    – user3482749
    Jan 19 at 18:30










  • $begingroup$
    Yes B was a typo, edited the question
    $endgroup$
    – Mathis
    Jan 19 at 18:32










  • $begingroup$
    @user3482749 "Not unless you think G/H is trivial" can you explain?
    $endgroup$
    – Mathis
    Jan 19 at 18:55










  • $begingroup$
    If you could prove, just from what you've got so far, that $qc - ra = qd - rb$, then you would have that $A^{-1}Bin H$ for all $A$ and $B$, hence $G/H$ would be trivial. That isn't the case, so that isn't going to be a useful line of enquiry.
    $endgroup$
    – user3482749
    Jan 19 at 19:08














0












0








0


1



$begingroup$



Let $$G = left{begin{pmatrix} q&0\a+bi&qend{pmatrix} mid q in mathbb{Q}^ast, a,binmathbb{R}right}$$
and $$H = left{begin{pmatrix} q&0\a+ai&qend{pmatrix} mid q in mathbb{Q},q>0, ainmathbb{R}right}$$
Which known group is the quotient group $(G, ·)/H$ isomorphic to?




I don't know how to solve this. What I've tried:



$A,B in G$ belong to the same coset iff $A^{-1}B in H$.
Let $A = begin{pmatrix} q&0\a+bi&qend{pmatrix}$ and $B = begin{pmatrix} r&0\c+di&rend{pmatrix}$. Then $A^{-1} = begin{pmatrix} 1/q&0\(-a-bi)/q^2&1/qend{pmatrix}$ and $A^{-1}B = begin{pmatrix} r/q&0\frac{qc-ra+i(qd-rb)}{q^2}&r/qend{pmatrix}$



That means that $qc-ra$ should be equal to $qd-rb$. But I don't know how to move from here. Can anyone point me in the right direction or tell me what I'm doing wrong?










share|cite|improve this question











$endgroup$





Let $$G = left{begin{pmatrix} q&0\a+bi&qend{pmatrix} mid q in mathbb{Q}^ast, a,binmathbb{R}right}$$
and $$H = left{begin{pmatrix} q&0\a+ai&qend{pmatrix} mid q in mathbb{Q},q>0, ainmathbb{R}right}$$
Which known group is the quotient group $(G, ·)/H$ isomorphic to?




I don't know how to solve this. What I've tried:



$A,B in G$ belong to the same coset iff $A^{-1}B in H$.
Let $A = begin{pmatrix} q&0\a+bi&qend{pmatrix}$ and $B = begin{pmatrix} r&0\c+di&rend{pmatrix}$. Then $A^{-1} = begin{pmatrix} 1/q&0\(-a-bi)/q^2&1/qend{pmatrix}$ and $A^{-1}B = begin{pmatrix} r/q&0\frac{qc-ra+i(qd-rb)}{q^2}&r/qend{pmatrix}$



That means that $qc-ra$ should be equal to $qd-rb$. But I don't know how to move from here. Can anyone point me in the right direction or tell me what I'm doing wrong?







abstract-algebra group-isomorphism quotient-group






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 19 at 20:25









Henrik

6,03792030




6,03792030










asked Jan 19 at 18:26









MathisMathis

153




153












  • $begingroup$
    I'm assuming that definition of $B$ is a typo?
    $endgroup$
    – user3482749
    Jan 19 at 18:29










  • $begingroup$
    "That means that qc−ra should be equal to qd−rb." Not unless you think $G/H$ is trivial (which it clearly isn't).
    $endgroup$
    – user3482749
    Jan 19 at 18:30










  • $begingroup$
    Yes B was a typo, edited the question
    $endgroup$
    – Mathis
    Jan 19 at 18:32










  • $begingroup$
    @user3482749 "Not unless you think G/H is trivial" can you explain?
    $endgroup$
    – Mathis
    Jan 19 at 18:55










  • $begingroup$
    If you could prove, just from what you've got so far, that $qc - ra = qd - rb$, then you would have that $A^{-1}Bin H$ for all $A$ and $B$, hence $G/H$ would be trivial. That isn't the case, so that isn't going to be a useful line of enquiry.
    $endgroup$
    – user3482749
    Jan 19 at 19:08


















  • $begingroup$
    I'm assuming that definition of $B$ is a typo?
    $endgroup$
    – user3482749
    Jan 19 at 18:29










  • $begingroup$
    "That means that qc−ra should be equal to qd−rb." Not unless you think $G/H$ is trivial (which it clearly isn't).
    $endgroup$
    – user3482749
    Jan 19 at 18:30










  • $begingroup$
    Yes B was a typo, edited the question
    $endgroup$
    – Mathis
    Jan 19 at 18:32










  • $begingroup$
    @user3482749 "Not unless you think G/H is trivial" can you explain?
    $endgroup$
    – Mathis
    Jan 19 at 18:55










  • $begingroup$
    If you could prove, just from what you've got so far, that $qc - ra = qd - rb$, then you would have that $A^{-1}Bin H$ for all $A$ and $B$, hence $G/H$ would be trivial. That isn't the case, so that isn't going to be a useful line of enquiry.
    $endgroup$
    – user3482749
    Jan 19 at 19:08
















$begingroup$
I'm assuming that definition of $B$ is a typo?
$endgroup$
– user3482749
Jan 19 at 18:29




$begingroup$
I'm assuming that definition of $B$ is a typo?
$endgroup$
– user3482749
Jan 19 at 18:29












$begingroup$
"That means that qc−ra should be equal to qd−rb." Not unless you think $G/H$ is trivial (which it clearly isn't).
$endgroup$
– user3482749
Jan 19 at 18:30




$begingroup$
"That means that qc−ra should be equal to qd−rb." Not unless you think $G/H$ is trivial (which it clearly isn't).
$endgroup$
– user3482749
Jan 19 at 18:30












$begingroup$
Yes B was a typo, edited the question
$endgroup$
– Mathis
Jan 19 at 18:32




$begingroup$
Yes B was a typo, edited the question
$endgroup$
– Mathis
Jan 19 at 18:32












$begingroup$
@user3482749 "Not unless you think G/H is trivial" can you explain?
$endgroup$
– Mathis
Jan 19 at 18:55




$begingroup$
@user3482749 "Not unless you think G/H is trivial" can you explain?
$endgroup$
– Mathis
Jan 19 at 18:55












$begingroup$
If you could prove, just from what you've got so far, that $qc - ra = qd - rb$, then you would have that $A^{-1}Bin H$ for all $A$ and $B$, hence $G/H$ would be trivial. That isn't the case, so that isn't going to be a useful line of enquiry.
$endgroup$
– user3482749
Jan 19 at 19:08




$begingroup$
If you could prove, just from what you've got so far, that $qc - ra = qd - rb$, then you would have that $A^{-1}Bin H$ for all $A$ and $B$, hence $G/H$ would be trivial. That isn't the case, so that isn't going to be a useful line of enquiry.
$endgroup$
– user3482749
Jan 19 at 19:08










1 Answer
1






active

oldest

votes


















1












$begingroup$

Clearly we can identify $(G,cdot)$ with $(mathbb{Q}^* times mathbb{C},*)$ by



$$
begin{pmatrix}
q & 0 \
z & q
end{pmatrix}
mapsto (q,z)
$$

where $(q,z)*(r,w) = (qr, qw+rz)$. Note that $(mathbb{Q}^* times mathbb{C},*) simeq (mathbb{Q}^*,cdot) oplus (mathbb{C},+)$, in fact $(q,z) = (q,0)*(1,frac{z}{q})$ uniquely and



$$ ({ (q,0) in G: q in mathbb{Q}^* },*) simeq (mathbb{Q}^*,cdot) $$
$$ ({ (1,z) in G: z in mathbb{C} },*) simeq (mathbb{C},+) $$
since $(q,0)*(r,0) = (qr,0)$ and $(1,z)*(1,w) = (1,z+w)$. With this identification



$$ H simeq (mathbb{Q}^+,cdot) oplus (mathbb{R}(1+i),+) simeq (mathbb{Q}^+,cdot) oplus(mathbb{R},+). $$
Now since
$$ a+ib = frac{1}{2}Big( (a+b)(1+i)+(a-b)(1-i) Big), $$
we have $mathbb{C} simeq mathbb{R}(1+i) oplus mathbb{R}(1-i) simeq mathbb{R}oplus mathbb{R}$. Finally



$$ frac{G}{H} simeq frac{(mathbb{Q}^*,cdot) oplus (mathbb{C},+)}{(mathbb{Q}^+,cdot) oplus (mathbb{R},+)} simeq ({pm1} times mathbb{R},*). $$
Now $({pm1} times mathbb{R},*) simeq (mathbb{R},+)$ by $varphi$ defined $(a,r) mapsto ar$, in fact
$$ varphi Big( (a,r)*(b,s) Big) = varphi(ab,as+br) = ab(as+br) = bs + ar = varphi(a,r)+varphi(b,s). $$



Therefore $(G/H,cdot) simeq (mathbb{R},+)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for the answer, but I have a few questions. What operation is ⊕? How do you get from ab(as+br) to bs+ar?
    $endgroup$
    – Mathis
    Jan 20 at 10:24










  • $begingroup$
    The symbol $oplus$ denote the direct sum of groups en.wikipedia.org/wiki/Direct_sum. If $a in {pm 1}$, then $a^2 =1$.
    $endgroup$
    – Kalhac
    Jan 20 at 14:25













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079661%2fwhich-group-is-this-quotient-group-isomorphic-to%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Clearly we can identify $(G,cdot)$ with $(mathbb{Q}^* times mathbb{C},*)$ by



$$
begin{pmatrix}
q & 0 \
z & q
end{pmatrix}
mapsto (q,z)
$$

where $(q,z)*(r,w) = (qr, qw+rz)$. Note that $(mathbb{Q}^* times mathbb{C},*) simeq (mathbb{Q}^*,cdot) oplus (mathbb{C},+)$, in fact $(q,z) = (q,0)*(1,frac{z}{q})$ uniquely and



$$ ({ (q,0) in G: q in mathbb{Q}^* },*) simeq (mathbb{Q}^*,cdot) $$
$$ ({ (1,z) in G: z in mathbb{C} },*) simeq (mathbb{C},+) $$
since $(q,0)*(r,0) = (qr,0)$ and $(1,z)*(1,w) = (1,z+w)$. With this identification



$$ H simeq (mathbb{Q}^+,cdot) oplus (mathbb{R}(1+i),+) simeq (mathbb{Q}^+,cdot) oplus(mathbb{R},+). $$
Now since
$$ a+ib = frac{1}{2}Big( (a+b)(1+i)+(a-b)(1-i) Big), $$
we have $mathbb{C} simeq mathbb{R}(1+i) oplus mathbb{R}(1-i) simeq mathbb{R}oplus mathbb{R}$. Finally



$$ frac{G}{H} simeq frac{(mathbb{Q}^*,cdot) oplus (mathbb{C},+)}{(mathbb{Q}^+,cdot) oplus (mathbb{R},+)} simeq ({pm1} times mathbb{R},*). $$
Now $({pm1} times mathbb{R},*) simeq (mathbb{R},+)$ by $varphi$ defined $(a,r) mapsto ar$, in fact
$$ varphi Big( (a,r)*(b,s) Big) = varphi(ab,as+br) = ab(as+br) = bs + ar = varphi(a,r)+varphi(b,s). $$



Therefore $(G/H,cdot) simeq (mathbb{R},+)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for the answer, but I have a few questions. What operation is ⊕? How do you get from ab(as+br) to bs+ar?
    $endgroup$
    – Mathis
    Jan 20 at 10:24










  • $begingroup$
    The symbol $oplus$ denote the direct sum of groups en.wikipedia.org/wiki/Direct_sum. If $a in {pm 1}$, then $a^2 =1$.
    $endgroup$
    – Kalhac
    Jan 20 at 14:25


















1












$begingroup$

Clearly we can identify $(G,cdot)$ with $(mathbb{Q}^* times mathbb{C},*)$ by



$$
begin{pmatrix}
q & 0 \
z & q
end{pmatrix}
mapsto (q,z)
$$

where $(q,z)*(r,w) = (qr, qw+rz)$. Note that $(mathbb{Q}^* times mathbb{C},*) simeq (mathbb{Q}^*,cdot) oplus (mathbb{C},+)$, in fact $(q,z) = (q,0)*(1,frac{z}{q})$ uniquely and



$$ ({ (q,0) in G: q in mathbb{Q}^* },*) simeq (mathbb{Q}^*,cdot) $$
$$ ({ (1,z) in G: z in mathbb{C} },*) simeq (mathbb{C},+) $$
since $(q,0)*(r,0) = (qr,0)$ and $(1,z)*(1,w) = (1,z+w)$. With this identification



$$ H simeq (mathbb{Q}^+,cdot) oplus (mathbb{R}(1+i),+) simeq (mathbb{Q}^+,cdot) oplus(mathbb{R},+). $$
Now since
$$ a+ib = frac{1}{2}Big( (a+b)(1+i)+(a-b)(1-i) Big), $$
we have $mathbb{C} simeq mathbb{R}(1+i) oplus mathbb{R}(1-i) simeq mathbb{R}oplus mathbb{R}$. Finally



$$ frac{G}{H} simeq frac{(mathbb{Q}^*,cdot) oplus (mathbb{C},+)}{(mathbb{Q}^+,cdot) oplus (mathbb{R},+)} simeq ({pm1} times mathbb{R},*). $$
Now $({pm1} times mathbb{R},*) simeq (mathbb{R},+)$ by $varphi$ defined $(a,r) mapsto ar$, in fact
$$ varphi Big( (a,r)*(b,s) Big) = varphi(ab,as+br) = ab(as+br) = bs + ar = varphi(a,r)+varphi(b,s). $$



Therefore $(G/H,cdot) simeq (mathbb{R},+)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for the answer, but I have a few questions. What operation is ⊕? How do you get from ab(as+br) to bs+ar?
    $endgroup$
    – Mathis
    Jan 20 at 10:24










  • $begingroup$
    The symbol $oplus$ denote the direct sum of groups en.wikipedia.org/wiki/Direct_sum. If $a in {pm 1}$, then $a^2 =1$.
    $endgroup$
    – Kalhac
    Jan 20 at 14:25
















1












1








1





$begingroup$

Clearly we can identify $(G,cdot)$ with $(mathbb{Q}^* times mathbb{C},*)$ by



$$
begin{pmatrix}
q & 0 \
z & q
end{pmatrix}
mapsto (q,z)
$$

where $(q,z)*(r,w) = (qr, qw+rz)$. Note that $(mathbb{Q}^* times mathbb{C},*) simeq (mathbb{Q}^*,cdot) oplus (mathbb{C},+)$, in fact $(q,z) = (q,0)*(1,frac{z}{q})$ uniquely and



$$ ({ (q,0) in G: q in mathbb{Q}^* },*) simeq (mathbb{Q}^*,cdot) $$
$$ ({ (1,z) in G: z in mathbb{C} },*) simeq (mathbb{C},+) $$
since $(q,0)*(r,0) = (qr,0)$ and $(1,z)*(1,w) = (1,z+w)$. With this identification



$$ H simeq (mathbb{Q}^+,cdot) oplus (mathbb{R}(1+i),+) simeq (mathbb{Q}^+,cdot) oplus(mathbb{R},+). $$
Now since
$$ a+ib = frac{1}{2}Big( (a+b)(1+i)+(a-b)(1-i) Big), $$
we have $mathbb{C} simeq mathbb{R}(1+i) oplus mathbb{R}(1-i) simeq mathbb{R}oplus mathbb{R}$. Finally



$$ frac{G}{H} simeq frac{(mathbb{Q}^*,cdot) oplus (mathbb{C},+)}{(mathbb{Q}^+,cdot) oplus (mathbb{R},+)} simeq ({pm1} times mathbb{R},*). $$
Now $({pm1} times mathbb{R},*) simeq (mathbb{R},+)$ by $varphi$ defined $(a,r) mapsto ar$, in fact
$$ varphi Big( (a,r)*(b,s) Big) = varphi(ab,as+br) = ab(as+br) = bs + ar = varphi(a,r)+varphi(b,s). $$



Therefore $(G/H,cdot) simeq (mathbb{R},+)$.






share|cite|improve this answer









$endgroup$



Clearly we can identify $(G,cdot)$ with $(mathbb{Q}^* times mathbb{C},*)$ by



$$
begin{pmatrix}
q & 0 \
z & q
end{pmatrix}
mapsto (q,z)
$$

where $(q,z)*(r,w) = (qr, qw+rz)$. Note that $(mathbb{Q}^* times mathbb{C},*) simeq (mathbb{Q}^*,cdot) oplus (mathbb{C},+)$, in fact $(q,z) = (q,0)*(1,frac{z}{q})$ uniquely and



$$ ({ (q,0) in G: q in mathbb{Q}^* },*) simeq (mathbb{Q}^*,cdot) $$
$$ ({ (1,z) in G: z in mathbb{C} },*) simeq (mathbb{C},+) $$
since $(q,0)*(r,0) = (qr,0)$ and $(1,z)*(1,w) = (1,z+w)$. With this identification



$$ H simeq (mathbb{Q}^+,cdot) oplus (mathbb{R}(1+i),+) simeq (mathbb{Q}^+,cdot) oplus(mathbb{R},+). $$
Now since
$$ a+ib = frac{1}{2}Big( (a+b)(1+i)+(a-b)(1-i) Big), $$
we have $mathbb{C} simeq mathbb{R}(1+i) oplus mathbb{R}(1-i) simeq mathbb{R}oplus mathbb{R}$. Finally



$$ frac{G}{H} simeq frac{(mathbb{Q}^*,cdot) oplus (mathbb{C},+)}{(mathbb{Q}^+,cdot) oplus (mathbb{R},+)} simeq ({pm1} times mathbb{R},*). $$
Now $({pm1} times mathbb{R},*) simeq (mathbb{R},+)$ by $varphi$ defined $(a,r) mapsto ar$, in fact
$$ varphi Big( (a,r)*(b,s) Big) = varphi(ab,as+br) = ab(as+br) = bs + ar = varphi(a,r)+varphi(b,s). $$



Therefore $(G/H,cdot) simeq (mathbb{R},+)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 19 at 20:01









KalhacKalhac

33417




33417












  • $begingroup$
    Thank you for the answer, but I have a few questions. What operation is ⊕? How do you get from ab(as+br) to bs+ar?
    $endgroup$
    – Mathis
    Jan 20 at 10:24










  • $begingroup$
    The symbol $oplus$ denote the direct sum of groups en.wikipedia.org/wiki/Direct_sum. If $a in {pm 1}$, then $a^2 =1$.
    $endgroup$
    – Kalhac
    Jan 20 at 14:25




















  • $begingroup$
    Thank you for the answer, but I have a few questions. What operation is ⊕? How do you get from ab(as+br) to bs+ar?
    $endgroup$
    – Mathis
    Jan 20 at 10:24










  • $begingroup$
    The symbol $oplus$ denote the direct sum of groups en.wikipedia.org/wiki/Direct_sum. If $a in {pm 1}$, then $a^2 =1$.
    $endgroup$
    – Kalhac
    Jan 20 at 14:25


















$begingroup$
Thank you for the answer, but I have a few questions. What operation is ⊕? How do you get from ab(as+br) to bs+ar?
$endgroup$
– Mathis
Jan 20 at 10:24




$begingroup$
Thank you for the answer, but I have a few questions. What operation is ⊕? How do you get from ab(as+br) to bs+ar?
$endgroup$
– Mathis
Jan 20 at 10:24












$begingroup$
The symbol $oplus$ denote the direct sum of groups en.wikipedia.org/wiki/Direct_sum. If $a in {pm 1}$, then $a^2 =1$.
$endgroup$
– Kalhac
Jan 20 at 14:25






$begingroup$
The symbol $oplus$ denote the direct sum of groups en.wikipedia.org/wiki/Direct_sum. If $a in {pm 1}$, then $a^2 =1$.
$endgroup$
– Kalhac
Jan 20 at 14:25




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079661%2fwhich-group-is-this-quotient-group-isomorphic-to%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

What does “Dominus providebit” mean?

Antonio Litta Visconti Arese