Posts

Showing posts from March 5, 2019

Wiebe

Image
Wiebe è un nome proprio di persona frisone, olandese e tedesco maschile [1] [2] . Indice 1 Varianti 1.1 Varianti in altre lingue 2 Origine e diffusione 3 Onomastico 4 Persone 4.1 Variante femminile Vibeke 5 Toponimi 6 Note Varianti | Alterati Frisone: Wibo [1] Olandese: Wibo [1] Femminili Frisone: Wiebke [3] Tedesco: Wiebke [3] [2] , Wibke [3] Varianti in altre lingue | Femminili Danese: Vibeke [3] Norvegese: Vibeke [3] Svedese: Viveka [3] Origine e diffusione | Si tratta di un ipocoristico, di origine medievale, di nomi contenenti l'elemento germanico wig , "guerra" [1] come Luigi, ma presente anche in nomi femminili quali Edvige ed Heilwig, e può essere quindi considerato analogo al nome Viggo. Alternativamente, viene indicato come la forma moderna del nome germanico Wippo , il cui significato potrebbe essere "frusta", "sferza", oppure "che si m

If graph $G$ is connected and has at least two vertices, prove that there exist vertices $u$ and $v$ so...

Image
2 $begingroup$ I would like to know if proof below is correct for this problem. Let $n$ be the number of vertices of the graph $G$ . As $G$ is connected graph, that means there are at least $n-1$ edges in the graph. If $G$ has exactly $n-1$ edges and $n$ vertices, it is a tree. Tree has at least two leaves. Let $u$ and $v$ be those leaves. By removing a vertex of degree 1 from a connected graph, it stays connected. That means $G-u$ and $G-v$ are connected too. If $G$ has more than $n-1$ edges, and it is connected, we can construct a spanning tree for all the vertices of the graph $G$ . That spanning tree also has at least two leaves. Let $u$ and $v$ be those leaves. These vertices are either leaves in $G$ or are connected with some another vertex in $G$ so they make a cycle. Either way, $G-u