Grothendieck group of tensor products
$begingroup$
For two unital rings $R,S$, one can form the ring $Rotimes_mathbb{Z} S$
(this is the coproduct in the category of rings). I was wondering whether the following formula holds for the Grothendieck group of projective modules over these rings:
$K_0(Rotimes_mathbb{Z} S ) cong K_0(R) otimes_mathbb{Z} K_0(S)$ as abelian groups (or as rings if $R,S$ are commutative rings).
Since there are ring maps $R rightarrow Rotimes_mathbb{Z} S$ and $S rightarrow Rotimes_mathbb{Z} S$, there are induced maps $K_0(R) rightarrow
K_0(Rotimes_mathbb{Z} S ), K_0(R) rightarrow
K_0(Rotimes_mathbb{Z} S )$; if $R,S$ are commutative rings, these are maps of commutative rings and hence there is an induced map
$K_0(R) otimes_mathbb{Z} K_0(S) rightarrow K_0(Rotimes_mathbb{Z} S )$. Is this an isomorphism? Note that $K_0(R times S) cong K_0(R) times K_0(S)$ but I am interested in the tensor product of rings.
More generally, is there a description of $Proj(R otimes_mathbb{Z} S)$ in terms of $Proj(R otimes_mathbb{Z} S)$. In another direction, what about if there is an extra ring $T$: is $K_0(R otimes_T S) cong K_0(R) otimes_{K_0(T)} K_0(S)$?
ring-theory modules k-theory
$endgroup$
add a comment |
$begingroup$
For two unital rings $R,S$, one can form the ring $Rotimes_mathbb{Z} S$
(this is the coproduct in the category of rings). I was wondering whether the following formula holds for the Grothendieck group of projective modules over these rings:
$K_0(Rotimes_mathbb{Z} S ) cong K_0(R) otimes_mathbb{Z} K_0(S)$ as abelian groups (or as rings if $R,S$ are commutative rings).
Since there are ring maps $R rightarrow Rotimes_mathbb{Z} S$ and $S rightarrow Rotimes_mathbb{Z} S$, there are induced maps $K_0(R) rightarrow
K_0(Rotimes_mathbb{Z} S ), K_0(R) rightarrow
K_0(Rotimes_mathbb{Z} S )$; if $R,S$ are commutative rings, these are maps of commutative rings and hence there is an induced map
$K_0(R) otimes_mathbb{Z} K_0(S) rightarrow K_0(Rotimes_mathbb{Z} S )$. Is this an isomorphism? Note that $K_0(R times S) cong K_0(R) times K_0(S)$ but I am interested in the tensor product of rings.
More generally, is there a description of $Proj(R otimes_mathbb{Z} S)$ in terms of $Proj(R otimes_mathbb{Z} S)$. In another direction, what about if there is an extra ring $T$: is $K_0(R otimes_T S) cong K_0(R) otimes_{K_0(T)} K_0(S)$?
ring-theory modules k-theory
$endgroup$
add a comment |
$begingroup$
For two unital rings $R,S$, one can form the ring $Rotimes_mathbb{Z} S$
(this is the coproduct in the category of rings). I was wondering whether the following formula holds for the Grothendieck group of projective modules over these rings:
$K_0(Rotimes_mathbb{Z} S ) cong K_0(R) otimes_mathbb{Z} K_0(S)$ as abelian groups (or as rings if $R,S$ are commutative rings).
Since there are ring maps $R rightarrow Rotimes_mathbb{Z} S$ and $S rightarrow Rotimes_mathbb{Z} S$, there are induced maps $K_0(R) rightarrow
K_0(Rotimes_mathbb{Z} S ), K_0(R) rightarrow
K_0(Rotimes_mathbb{Z} S )$; if $R,S$ are commutative rings, these are maps of commutative rings and hence there is an induced map
$K_0(R) otimes_mathbb{Z} K_0(S) rightarrow K_0(Rotimes_mathbb{Z} S )$. Is this an isomorphism? Note that $K_0(R times S) cong K_0(R) times K_0(S)$ but I am interested in the tensor product of rings.
More generally, is there a description of $Proj(R otimes_mathbb{Z} S)$ in terms of $Proj(R otimes_mathbb{Z} S)$. In another direction, what about if there is an extra ring $T$: is $K_0(R otimes_T S) cong K_0(R) otimes_{K_0(T)} K_0(S)$?
ring-theory modules k-theory
$endgroup$
For two unital rings $R,S$, one can form the ring $Rotimes_mathbb{Z} S$
(this is the coproduct in the category of rings). I was wondering whether the following formula holds for the Grothendieck group of projective modules over these rings:
$K_0(Rotimes_mathbb{Z} S ) cong K_0(R) otimes_mathbb{Z} K_0(S)$ as abelian groups (or as rings if $R,S$ are commutative rings).
Since there are ring maps $R rightarrow Rotimes_mathbb{Z} S$ and $S rightarrow Rotimes_mathbb{Z} S$, there are induced maps $K_0(R) rightarrow
K_0(Rotimes_mathbb{Z} S ), K_0(R) rightarrow
K_0(Rotimes_mathbb{Z} S )$; if $R,S$ are commutative rings, these are maps of commutative rings and hence there is an induced map
$K_0(R) otimes_mathbb{Z} K_0(S) rightarrow K_0(Rotimes_mathbb{Z} S )$. Is this an isomorphism? Note that $K_0(R times S) cong K_0(R) times K_0(S)$ but I am interested in the tensor product of rings.
More generally, is there a description of $Proj(R otimes_mathbb{Z} S)$ in terms of $Proj(R otimes_mathbb{Z} S)$. In another direction, what about if there is an extra ring $T$: is $K_0(R otimes_T S) cong K_0(R) otimes_{K_0(T)} K_0(S)$?
ring-theory modules k-theory
ring-theory modules k-theory
edited Jan 23 at 20:03
user39598
asked Jan 23 at 19:54
user39598user39598
174213
174213
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
No, this is not true in general. For instance, suppose $R=S=mathbb{Q}(i)$. Then $K_0(R)=K_0(S)congmathbb{Z}$, but $Rotimes Scong mathbb{Q}(i)times mathbb{Q}(i)$ so $K_0(Rotimes S)congmathbb{Z}^2$.
In that example, the natural map $K_0(R)otimes K_0(S)to K_0(Rotimes S)$ fails to be surjective. It can also fail to be injective. For instance, if $R$ and $S$ are fields of different characteristic, then $Rotimes S=0$ so $K(Rotimes S)=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084985%2fgrothendieck-group-of-tensor-products%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, this is not true in general. For instance, suppose $R=S=mathbb{Q}(i)$. Then $K_0(R)=K_0(S)congmathbb{Z}$, but $Rotimes Scong mathbb{Q}(i)times mathbb{Q}(i)$ so $K_0(Rotimes S)congmathbb{Z}^2$.
In that example, the natural map $K_0(R)otimes K_0(S)to K_0(Rotimes S)$ fails to be surjective. It can also fail to be injective. For instance, if $R$ and $S$ are fields of different characteristic, then $Rotimes S=0$ so $K(Rotimes S)=0$.
$endgroup$
add a comment |
$begingroup$
No, this is not true in general. For instance, suppose $R=S=mathbb{Q}(i)$. Then $K_0(R)=K_0(S)congmathbb{Z}$, but $Rotimes Scong mathbb{Q}(i)times mathbb{Q}(i)$ so $K_0(Rotimes S)congmathbb{Z}^2$.
In that example, the natural map $K_0(R)otimes K_0(S)to K_0(Rotimes S)$ fails to be surjective. It can also fail to be injective. For instance, if $R$ and $S$ are fields of different characteristic, then $Rotimes S=0$ so $K(Rotimes S)=0$.
$endgroup$
add a comment |
$begingroup$
No, this is not true in general. For instance, suppose $R=S=mathbb{Q}(i)$. Then $K_0(R)=K_0(S)congmathbb{Z}$, but $Rotimes Scong mathbb{Q}(i)times mathbb{Q}(i)$ so $K_0(Rotimes S)congmathbb{Z}^2$.
In that example, the natural map $K_0(R)otimes K_0(S)to K_0(Rotimes S)$ fails to be surjective. It can also fail to be injective. For instance, if $R$ and $S$ are fields of different characteristic, then $Rotimes S=0$ so $K(Rotimes S)=0$.
$endgroup$
No, this is not true in general. For instance, suppose $R=S=mathbb{Q}(i)$. Then $K_0(R)=K_0(S)congmathbb{Z}$, but $Rotimes Scong mathbb{Q}(i)times mathbb{Q}(i)$ so $K_0(Rotimes S)congmathbb{Z}^2$.
In that example, the natural map $K_0(R)otimes K_0(S)to K_0(Rotimes S)$ fails to be surjective. It can also fail to be injective. For instance, if $R$ and $S$ are fields of different characteristic, then $Rotimes S=0$ so $K(Rotimes S)=0$.
answered Jan 23 at 21:54
Eric WofseyEric Wofsey
188k14216346
188k14216346
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084985%2fgrothendieck-group-of-tensor-products%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown