Posts

Showing posts from March 21, 2019

File:BindingOfIsaac-Sheol57.png

Image
Please consider supporting The Cutting Room Floor on Patreon. Thanks for all your support! File:BindingOfIsaac-Sheol57.png From The Cutting Room Floor Jump to: navigation, search File File history File usage No higher resolution available. BindingOfIsaac-Sheol57.png ‎ (794 × 592 pixels, file size: 200 KB, MIME type: image/png ) This image is a screenshot of a(n) Windows game. File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:48, 7 January 2013 794 × 592 (200 KB) Color Printer (Talk | contribs) {{screenshot|PC}} You cannot overwrite this file. File usage The following page links to this file: The Binding of Isaac Retrieved from "https://tcrf.net/index.php?title=File:BindingOfIsaac-Sheol57.png&oldid=225779...

Bioetica

Image
La bioetica (dal greco antico ἔθος (o ήθος) [1] , "èthos", carattere o comportamento, costume, consuetudine, e βίος, "bìos", vita) è una disciplina che si occupa delle questioni morali legate alla ricerca biologica e alla medicina. La bioetica ha carattere interdisciplinare e coinvolge la filosofia, la filosofia della scienza, la medicina, la bioetica clinica, la biologia, la giurisprudenza, il biodiritto, la sociologia e la biopolitica, nelle diverse visioni morali atee, agnostiche, spirituali e religiose. Coloro che si occupano di bioetica sono quindi specialisti in varie discipline e vengono chiamati "bioeticisti", o più comunemente "bioetici". [2] [3] Teseo e il Minotauro in uno skyphos beota a figure nere del ~550 a.C. Indice 1 Origine del termine e definizioni 1.1 Fritz Jahr 1.2 Van Rensselaer Potter 1.3 André Hellegers 1.4 Warren Reich 1.5 Altre definizioni 2 Bioetica e religioni 2.1 Bioet...

Find a semigroup, stationary distribution and calculate a probability

Image
2 Let ${{X_t | tge 0}}$ be a Markov Process on a state space $S={{1,2,3}}$ with a generator $$ G=begin{bmatrix} -1 & 0 & 1 \ 3 & -4 & 1 \ 2 & 0 & -2 end{bmatrix}$$ (a) Find a semigroup ${{ P_t | t ge 0}}$ and find a stationary distribution (b) Calculate $P(X_{3t}=1 | X_{5t}=3, X_{0}=2, X_{4t}=3, X_{t}=2)$ (a) $G=B;A;B^{-1}$ . I've got a formula that $P_t=sum_{n=0}^{infty} frac{t^n}{n!}A^n=B(sum_{n=0}^{infty} frac{t^n}{n!}A^n)B^{-1}$ , so I'm diagonalizing my matrix G, substitute to my formula and that's all. According to stationary distribution we have that $pi G=0$ , so $(pi_1,pi_2,pi_3)G=(0,0,0)$ , and from that I've found that $(pi_1,pi_2,pi_3)=(2/3,0,1/3)$ , because $sum pi_i=1$ . (b)I suppose that I need some formulas to calculate this probability...