Posts

Showing posts from March 4, 2019

File:AstroBlasterHiScoreRev3.png

Image
Please consider supporting The Cutting Room Floor on Patreon. Thanks for all your support! File:AstroBlasterHiScoreRev3.png From The Cutting Room Floor Jump to: navigation, search File File history File usage No higher resolution available. AstroBlasterHiScoreRev3.png ‎ (224 × 256 pixels, file size: 467 B, MIME type: image/png ) This image is a screenshot of a(n) Arcade game. File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 22:10, 10 November 2012 224 × 256 (467 B) GoldS (Talk | contribs) {{screenshot|Arcade}} You cannot overwrite this file. File usage The following page links to this file: Astro Blaster Retrieved from "https://tcrf.net/index.php?title=File:AstroBlasterHiScoreRev3.png&oldid=89787" ...

Lorenzo Perosi

Image
.mw-parser-output .citazione-table{margin-bottom:.5em;font-size:95%}.mw-parser-output .citazione-table td{padding:0 1.2em 0 2.4em}.mw-parser-output .citazione-lang{vertical-align:top}.mw-parser-output .citazione-lang td{width:50%}.mw-parser-output .citazione-lang td:first-child{padding:0 0 0 2.4em}.mw-parser-output .citazione-lang td:nth-child(2){padding:0 1.2em} « C'è più musica nella testa di Perosi che in quella mia e di Mascagni messe insieme. » ( Giacomo Puccini [1] ) Lorenzo Perosi Monsignor Lorenzo Perosi (Tortona, 21 dicembre 1872 – Roma, 12 ottobre 1956) è stato un presbitero, compositore e direttore di coro italiano. Autore di musica sacra, noto per i suoi oratori, le sue messe polifoniche e i suoi mottetti, fu un compositore molto prolifico. [2] Perosi è considerato inoltre la guida e l'esponente principale del cosiddetto Movimento Ceciliano. Indice 1 Biografia 2 La formazione gregoriana 3 Altri elementi del linguaggio perosiano....

Submodule of free module over a p.i.d. is free even when the module is not finitely generated?

Image
23 23 $begingroup$ I have heard that any submodule of a free module over a p.i.d. is free. I can prove this for finitely generated modules over a p.i.d. But the proof involves induction on the number of generators, so it does not apply to modules that are not finitely generated. Does the result still hold? What's the argument? abstract-algebra ring-theory modules principal-ideal-domains share | cite | improve this question edited Jun 18 '14 at 21:49 user26857 39.3k 12 41 83 asked Jun 25 '12 at 18:21 ...