How can we have he similar decomposition of $ mathbb{Q}_p$ and $mathbb{Q}_p(zeta_p)$?
$begingroup$
We have,
$mathbb{Q}_p=$p-adic field, $mathbb{Z}_p=$ring of p-adic integers, $mathbb{Z}_p^{times}=$multiplicative group of units in $mathbb{Z}_p$.
We have the following decompositions:
$mathbb{Z}_p^{times}=mu_{p-1} times (1+pmathbb{Z}_p)$,
where $mu_{p-1}$ is the group of roots of unity of order $ p-1$,
$mathbb{Q}_p^{times}=p^{mathbb{Z}} times mu_{p-1} times (1+pmathbb{Z}_p) simeq mathbb{Z} times mathbb{Z} /(p-1) mathbb{Z} times mathbb{Z}_p$.
The question is-
How can we have he similar decomposition of $ mathbb{Q}_p[zeta_p]^{times}$ and $mathbb{Q}_p(zeta_p)$ ?
commutative-algebra p-adic-number-theory
$endgroup$
add a comment |
$begingroup$
We have,
$mathbb{Q}_p=$p-adic field, $mathbb{Z}_p=$ring of p-adic integers, $mathbb{Z}_p^{times}=$multiplicative group of units in $mathbb{Z}_p$.
We have the following decompositions:
$mathbb{Z}_p^{times}=mu_{p-1} times (1+pmathbb{Z}_p)$,
where $mu_{p-1}$ is the group of roots of unity of order $ p-1$,
$mathbb{Q}_p^{times}=p^{mathbb{Z}} times mu_{p-1} times (1+pmathbb{Z}_p) simeq mathbb{Z} times mathbb{Z} /(p-1) mathbb{Z} times mathbb{Z}_p$.
The question is-
How can we have he similar decomposition of $ mathbb{Q}_p[zeta_p]^{times}$ and $mathbb{Q}_p(zeta_p)$ ?
commutative-algebra p-adic-number-theory
$endgroup$
2
$begingroup$
It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
$endgroup$
– reuns
Jan 23 at 17:36
$begingroup$
@reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
$endgroup$
– M. A. SARKAR
Jan 23 at 17:52
2
$begingroup$
I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
$endgroup$
– reuns
Jan 23 at 18:19
add a comment |
$begingroup$
We have,
$mathbb{Q}_p=$p-adic field, $mathbb{Z}_p=$ring of p-adic integers, $mathbb{Z}_p^{times}=$multiplicative group of units in $mathbb{Z}_p$.
We have the following decompositions:
$mathbb{Z}_p^{times}=mu_{p-1} times (1+pmathbb{Z}_p)$,
where $mu_{p-1}$ is the group of roots of unity of order $ p-1$,
$mathbb{Q}_p^{times}=p^{mathbb{Z}} times mu_{p-1} times (1+pmathbb{Z}_p) simeq mathbb{Z} times mathbb{Z} /(p-1) mathbb{Z} times mathbb{Z}_p$.
The question is-
How can we have he similar decomposition of $ mathbb{Q}_p[zeta_p]^{times}$ and $mathbb{Q}_p(zeta_p)$ ?
commutative-algebra p-adic-number-theory
$endgroup$
We have,
$mathbb{Q}_p=$p-adic field, $mathbb{Z}_p=$ring of p-adic integers, $mathbb{Z}_p^{times}=$multiplicative group of units in $mathbb{Z}_p$.
We have the following decompositions:
$mathbb{Z}_p^{times}=mu_{p-1} times (1+pmathbb{Z}_p)$,
where $mu_{p-1}$ is the group of roots of unity of order $ p-1$,
$mathbb{Q}_p^{times}=p^{mathbb{Z}} times mu_{p-1} times (1+pmathbb{Z}_p) simeq mathbb{Z} times mathbb{Z} /(p-1) mathbb{Z} times mathbb{Z}_p$.
The question is-
How can we have he similar decomposition of $ mathbb{Q}_p[zeta_p]^{times}$ and $mathbb{Q}_p(zeta_p)$ ?
commutative-algebra p-adic-number-theory
commutative-algebra p-adic-number-theory
edited Jan 23 at 18:13
M. A. SARKAR
asked Jan 23 at 16:37
M. A. SARKARM. A. SARKAR
2,3071719
2,3071719
2
$begingroup$
It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
$endgroup$
– reuns
Jan 23 at 17:36
$begingroup$
@reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
$endgroup$
– M. A. SARKAR
Jan 23 at 17:52
2
$begingroup$
I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
$endgroup$
– reuns
Jan 23 at 18:19
add a comment |
2
$begingroup$
It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
$endgroup$
– reuns
Jan 23 at 17:36
$begingroup$
@reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
$endgroup$
– M. A. SARKAR
Jan 23 at 17:52
2
$begingroup$
I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
$endgroup$
– reuns
Jan 23 at 18:19
2
2
$begingroup$
It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
$endgroup$
– reuns
Jan 23 at 17:36
$begingroup$
It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
$endgroup$
– reuns
Jan 23 at 17:36
$begingroup$
@reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
$endgroup$
– M. A. SARKAR
Jan 23 at 17:52
$begingroup$
@reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
$endgroup$
– M. A. SARKAR
Jan 23 at 17:52
2
2
$begingroup$
I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
$endgroup$
– reuns
Jan 23 at 18:19
$begingroup$
I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
$endgroup$
– reuns
Jan 23 at 18:19
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084725%2fhow-can-we-have-he-similar-decomposition-of-mathbbq-p-and-mathbbq-p-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084725%2fhow-can-we-have-he-similar-decomposition-of-mathbbq-p-and-mathbbq-p-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
$endgroup$
– reuns
Jan 23 at 17:36
$begingroup$
@reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
$endgroup$
– M. A. SARKAR
Jan 23 at 17:52
2
$begingroup$
I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
$endgroup$
– reuns
Jan 23 at 18:19