How can we have he similar decomposition of $ mathbb{Q}_p$ and $mathbb{Q}_p(zeta_p)$?












1












$begingroup$


We have,



$mathbb{Q}_p=$p-adic field, $mathbb{Z}_p=$ring of p-adic integers, $mathbb{Z}_p^{times}=$multiplicative group of units in $mathbb{Z}_p$.



We have the following decompositions:



$mathbb{Z}_p^{times}=mu_{p-1} times (1+pmathbb{Z}_p)$,



where $mu_{p-1}$ is the group of roots of unity of order $ p-1$,



$mathbb{Q}_p^{times}=p^{mathbb{Z}} times mu_{p-1} times (1+pmathbb{Z}_p) simeq mathbb{Z} times mathbb{Z} /(p-1) mathbb{Z} times mathbb{Z}_p$.



The question is-



How can we have he similar decomposition of $ mathbb{Q}_p[zeta_p]^{times}$ and $mathbb{Q}_p(zeta_p)$ ?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
    $endgroup$
    – reuns
    Jan 23 at 17:36












  • $begingroup$
    @reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
    $endgroup$
    – M. A. SARKAR
    Jan 23 at 17:52






  • 2




    $begingroup$
    I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
    $endgroup$
    – reuns
    Jan 23 at 18:19


















1












$begingroup$


We have,



$mathbb{Q}_p=$p-adic field, $mathbb{Z}_p=$ring of p-adic integers, $mathbb{Z}_p^{times}=$multiplicative group of units in $mathbb{Z}_p$.



We have the following decompositions:



$mathbb{Z}_p^{times}=mu_{p-1} times (1+pmathbb{Z}_p)$,



where $mu_{p-1}$ is the group of roots of unity of order $ p-1$,



$mathbb{Q}_p^{times}=p^{mathbb{Z}} times mu_{p-1} times (1+pmathbb{Z}_p) simeq mathbb{Z} times mathbb{Z} /(p-1) mathbb{Z} times mathbb{Z}_p$.



The question is-



How can we have he similar decomposition of $ mathbb{Q}_p[zeta_p]^{times}$ and $mathbb{Q}_p(zeta_p)$ ?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
    $endgroup$
    – reuns
    Jan 23 at 17:36












  • $begingroup$
    @reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
    $endgroup$
    – M. A. SARKAR
    Jan 23 at 17:52






  • 2




    $begingroup$
    I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
    $endgroup$
    – reuns
    Jan 23 at 18:19
















1












1








1


1



$begingroup$


We have,



$mathbb{Q}_p=$p-adic field, $mathbb{Z}_p=$ring of p-adic integers, $mathbb{Z}_p^{times}=$multiplicative group of units in $mathbb{Z}_p$.



We have the following decompositions:



$mathbb{Z}_p^{times}=mu_{p-1} times (1+pmathbb{Z}_p)$,



where $mu_{p-1}$ is the group of roots of unity of order $ p-1$,



$mathbb{Q}_p^{times}=p^{mathbb{Z}} times mu_{p-1} times (1+pmathbb{Z}_p) simeq mathbb{Z} times mathbb{Z} /(p-1) mathbb{Z} times mathbb{Z}_p$.



The question is-



How can we have he similar decomposition of $ mathbb{Q}_p[zeta_p]^{times}$ and $mathbb{Q}_p(zeta_p)$ ?










share|cite|improve this question











$endgroup$




We have,



$mathbb{Q}_p=$p-adic field, $mathbb{Z}_p=$ring of p-adic integers, $mathbb{Z}_p^{times}=$multiplicative group of units in $mathbb{Z}_p$.



We have the following decompositions:



$mathbb{Z}_p^{times}=mu_{p-1} times (1+pmathbb{Z}_p)$,



where $mu_{p-1}$ is the group of roots of unity of order $ p-1$,



$mathbb{Q}_p^{times}=p^{mathbb{Z}} times mu_{p-1} times (1+pmathbb{Z}_p) simeq mathbb{Z} times mathbb{Z} /(p-1) mathbb{Z} times mathbb{Z}_p$.



The question is-



How can we have he similar decomposition of $ mathbb{Q}_p[zeta_p]^{times}$ and $mathbb{Q}_p(zeta_p)$ ?







commutative-algebra p-adic-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 23 at 18:13







M. A. SARKAR

















asked Jan 23 at 16:37









M. A. SARKARM. A. SARKAR

2,3071719




2,3071719








  • 2




    $begingroup$
    It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
    $endgroup$
    – reuns
    Jan 23 at 17:36












  • $begingroup$
    @reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
    $endgroup$
    – M. A. SARKAR
    Jan 23 at 17:52






  • 2




    $begingroup$
    I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
    $endgroup$
    – reuns
    Jan 23 at 18:19
















  • 2




    $begingroup$
    It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
    $endgroup$
    – reuns
    Jan 23 at 17:36












  • $begingroup$
    @reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
    $endgroup$
    – M. A. SARKAR
    Jan 23 at 17:52






  • 2




    $begingroup$
    I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
    $endgroup$
    – reuns
    Jan 23 at 18:19










2




2




$begingroup$
It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
$endgroup$
– reuns
Jan 23 at 17:36






$begingroup$
It is obvious how to go from $mathbb{Z}_p[zeta_p]^times$ to $mathbb{Q}_p(zeta_p)^times$. I don't see what you mean with a decomposition of $mathbb{Q}_p$. And my previous comment was incorrect. $zeta_p-1$ is an uniformizer. Is there some $pi = a (zeta_p-1), a in mathbb{Z}_p[pi]^times$ such that $(1+pi)^{mathbb{Z}}$ is dense in $1+pi mathbb{Z}_p[pi]$ ? If it doesn't depend on $a$ then no since $a = 1$ gives $(1+pi)^{mathbb{Z}} = zeta_p^{mathbb{Z}}$.
$endgroup$
– reuns
Jan 23 at 17:36














$begingroup$
@reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
$endgroup$
– M. A. SARKAR
Jan 23 at 17:52




$begingroup$
@reuns, what is decomposition of $ mathbb{Z}_p[zeta_p]^{times}$ and $ mathbb{Q}_p[zeta_p]^{times}$
$endgroup$
– M. A. SARKAR
Jan 23 at 17:52




2




2




$begingroup$
I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
$endgroup$
– reuns
Jan 23 at 18:19






$begingroup$
I think the best way to start is then with the $p$-adic $log,exp$, showing for some $k$ that $log,exp$ is a pair of isomomorphism $1+pi^k mathbb{Z}_p[pi] leftrightarrow pi^k mathbb{Z}_p[pi]$. Then use $mathbb{Z}_p[pi]^times/(1+pi^k mathbb{Z}_p[pi] )$ is finite. This is also a proof $(1+pi)^mathbb{Z}$ is never dense in $1+pimathbb{Z}_p[pi] $
$endgroup$
– reuns
Jan 23 at 18:19












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084725%2fhow-can-we-have-he-similar-decomposition-of-mathbbq-p-and-mathbbq-p-z%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084725%2fhow-can-we-have-he-similar-decomposition-of-mathbbq-p-and-mathbbq-p-z%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

The Binding of Isaac: Rebirth/Afterbirth

Mario Kart Wii

Dobbiaco