Is $frac{R[x]}{(f(x))}$ finite for $R$ finite and $f$ not monic polynomial?
$begingroup$
If $R$ is a finite commutative ring, then is $frac{R[x]}{(f(x))}$ finite with $f$ not monic polynomial?
I can prove above claim if f(x) is monic polynomial using division algorithm? But I am not possible further as if f(x) is not monic polynomials then I can not use division algorithm.
Any Help will be appreciated
abstract-algebra polynomials ring-theory finite-rings
$endgroup$
add a comment |
$begingroup$
If $R$ is a finite commutative ring, then is $frac{R[x]}{(f(x))}$ finite with $f$ not monic polynomial?
I can prove above claim if f(x) is monic polynomial using division algorithm? But I am not possible further as if f(x) is not monic polynomials then I can not use division algorithm.
Any Help will be appreciated
abstract-algebra polynomials ring-theory finite-rings
$endgroup$
add a comment |
$begingroup$
If $R$ is a finite commutative ring, then is $frac{R[x]}{(f(x))}$ finite with $f$ not monic polynomial?
I can prove above claim if f(x) is monic polynomial using division algorithm? But I am not possible further as if f(x) is not monic polynomials then I can not use division algorithm.
Any Help will be appreciated
abstract-algebra polynomials ring-theory finite-rings
$endgroup$
If $R$ is a finite commutative ring, then is $frac{R[x]}{(f(x))}$ finite with $f$ not monic polynomial?
I can prove above claim if f(x) is monic polynomial using division algorithm? But I am not possible further as if f(x) is not monic polynomials then I can not use division algorithm.
Any Help will be appreciated
abstract-algebra polynomials ring-theory finite-rings
abstract-algebra polynomials ring-theory finite-rings
edited Jan 19 at 16:44
user26857
39.3k124183
39.3k124183
asked Jan 18 at 11:09
SRJSRJ
1,7831620
1,7831620
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In $Bbb Z_4[x]/(2x)$, the elements $1, x, x^2, x^3, ldots$ are all distinct.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078104%2fis-fracrxfx-finite-for-r-finite-and-f-not-monic-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In $Bbb Z_4[x]/(2x)$, the elements $1, x, x^2, x^3, ldots$ are all distinct.
$endgroup$
add a comment |
$begingroup$
In $Bbb Z_4[x]/(2x)$, the elements $1, x, x^2, x^3, ldots$ are all distinct.
$endgroup$
add a comment |
$begingroup$
In $Bbb Z_4[x]/(2x)$, the elements $1, x, x^2, x^3, ldots$ are all distinct.
$endgroup$
In $Bbb Z_4[x]/(2x)$, the elements $1, x, x^2, x^3, ldots$ are all distinct.
answered Jan 18 at 11:13
ArthurArthur
115k7116198
115k7116198
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078104%2fis-fracrxfx-finite-for-r-finite-and-f-not-monic-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown