What is the fundamental matrix solution?












0












$begingroup$


Let $A$ be a 3 by 3 matrix, such that $dot{x}=Ax$. I am trying to find the fundamental matrix solution. I know that I need to find the eigenvalues and eigenvectors of $A$ which I did but I am not sure what to do next. Does anyone know what to once you find the eigenvalues and eigenvectors?



Thanks in advance.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Do you mean the fundamental matrix of a system of differential equations?
    $endgroup$
    – cheesyfluff
    Jan 2 '16 at 16:00










  • $begingroup$
    @cheesyfluff, yes.
    $endgroup$
    – MaxMin
    Jan 2 '16 at 16:16










  • $begingroup$
    Do you know about matrix exponentials?
    $endgroup$
    – Jack M
    Jan 2 '16 at 16:17










  • $begingroup$
    @JackM, Yes, I do.
    $endgroup$
    – MaxMin
    Jan 2 '16 at 16:18
















0












$begingroup$


Let $A$ be a 3 by 3 matrix, such that $dot{x}=Ax$. I am trying to find the fundamental matrix solution. I know that I need to find the eigenvalues and eigenvectors of $A$ which I did but I am not sure what to do next. Does anyone know what to once you find the eigenvalues and eigenvectors?



Thanks in advance.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Do you mean the fundamental matrix of a system of differential equations?
    $endgroup$
    – cheesyfluff
    Jan 2 '16 at 16:00










  • $begingroup$
    @cheesyfluff, yes.
    $endgroup$
    – MaxMin
    Jan 2 '16 at 16:16










  • $begingroup$
    Do you know about matrix exponentials?
    $endgroup$
    – Jack M
    Jan 2 '16 at 16:17










  • $begingroup$
    @JackM, Yes, I do.
    $endgroup$
    – MaxMin
    Jan 2 '16 at 16:18














0












0








0





$begingroup$


Let $A$ be a 3 by 3 matrix, such that $dot{x}=Ax$. I am trying to find the fundamental matrix solution. I know that I need to find the eigenvalues and eigenvectors of $A$ which I did but I am not sure what to do next. Does anyone know what to once you find the eigenvalues and eigenvectors?



Thanks in advance.










share|cite|improve this question











$endgroup$




Let $A$ be a 3 by 3 matrix, such that $dot{x}=Ax$. I am trying to find the fundamental matrix solution. I know that I need to find the eigenvalues and eigenvectors of $A$ which I did but I am not sure what to do next. Does anyone know what to once you find the eigenvalues and eigenvectors?



Thanks in advance.







matrices ordinary-differential-equations systems-of-equations matrix-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 '16 at 16:57









cheesyfluff

1,482520




1,482520










asked Jan 2 '16 at 15:55









MaxMinMaxMin

11




11








  • 1




    $begingroup$
    Do you mean the fundamental matrix of a system of differential equations?
    $endgroup$
    – cheesyfluff
    Jan 2 '16 at 16:00










  • $begingroup$
    @cheesyfluff, yes.
    $endgroup$
    – MaxMin
    Jan 2 '16 at 16:16










  • $begingroup$
    Do you know about matrix exponentials?
    $endgroup$
    – Jack M
    Jan 2 '16 at 16:17










  • $begingroup$
    @JackM, Yes, I do.
    $endgroup$
    – MaxMin
    Jan 2 '16 at 16:18














  • 1




    $begingroup$
    Do you mean the fundamental matrix of a system of differential equations?
    $endgroup$
    – cheesyfluff
    Jan 2 '16 at 16:00










  • $begingroup$
    @cheesyfluff, yes.
    $endgroup$
    – MaxMin
    Jan 2 '16 at 16:16










  • $begingroup$
    Do you know about matrix exponentials?
    $endgroup$
    – Jack M
    Jan 2 '16 at 16:17










  • $begingroup$
    @JackM, Yes, I do.
    $endgroup$
    – MaxMin
    Jan 2 '16 at 16:18








1




1




$begingroup$
Do you mean the fundamental matrix of a system of differential equations?
$endgroup$
– cheesyfluff
Jan 2 '16 at 16:00




$begingroup$
Do you mean the fundamental matrix of a system of differential equations?
$endgroup$
– cheesyfluff
Jan 2 '16 at 16:00












$begingroup$
@cheesyfluff, yes.
$endgroup$
– MaxMin
Jan 2 '16 at 16:16




$begingroup$
@cheesyfluff, yes.
$endgroup$
– MaxMin
Jan 2 '16 at 16:16












$begingroup$
Do you know about matrix exponentials?
$endgroup$
– Jack M
Jan 2 '16 at 16:17




$begingroup$
Do you know about matrix exponentials?
$endgroup$
– Jack M
Jan 2 '16 at 16:17












$begingroup$
@JackM, Yes, I do.
$endgroup$
– MaxMin
Jan 2 '16 at 16:18




$begingroup$
@JackM, Yes, I do.
$endgroup$
– MaxMin
Jan 2 '16 at 16:18










1 Answer
1






active

oldest

votes


















0












$begingroup$

Assuming you have three unique eigenvalues $(lambda_1,lambda_2,lambda_3)$ and eigenvectors $(pmb{xi}^{(1)},pmb{xi}^{(2)},pmb{xi}^{(3)})$ you should have three linearly independent solutions in the form
$$mathbf{x}_1(t)=pmb{xi}^{(1)} e^{lambda_1t}qquad
mathbf{x}_2(t)=pmb{xi}^{(2)} e^{lambda_2t}qquad
mathbf{x}_3(t)=pmb{xi}^{(3)} e^{lambda_3t}$$
Then your fundamental matrix should be
$$pmb{psi}(t)=left(
begin{array}{@{}ccc@{}}
mathbf{x}_1(t)&
mathbf{x}_2(t)&
mathbf{x}_3(t)
end{array}right)=left(
begin{array}{@{}ccc@{}}
xi_1^{(1)e^{lambda_1t}}&xi_1^{(2)e^{lambda_2t}}&xi_1^{(3)e^{lambda_3t}}\
xi_2^{(1)e^{lambda_1t}}&xi_2^{(2)e^{lambda_2t}}&xi_2^{(3)e^{lambda_3t}}\
xi_3^{(1)e^{lambda_1t}}&xi_3^{(2)e^{lambda_2t}}&xi_3^{(3)e^{lambda_3t}}\
end{array}
right)
$$
where $xi_n^{(m)}$ denotes the $n$th element of $pmb{xi}^{(m)}$. Note that the general solution of the differential equation is
$$mathbf{x}=pmb{psi}(t)mathbf{c}$$
where $mathbf{c}=(c_1,c_2,c_3)^intercal$ is a constant matrix.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1597269%2fwhat-is-the-fundamental-matrix-solution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Assuming you have three unique eigenvalues $(lambda_1,lambda_2,lambda_3)$ and eigenvectors $(pmb{xi}^{(1)},pmb{xi}^{(2)},pmb{xi}^{(3)})$ you should have three linearly independent solutions in the form
    $$mathbf{x}_1(t)=pmb{xi}^{(1)} e^{lambda_1t}qquad
    mathbf{x}_2(t)=pmb{xi}^{(2)} e^{lambda_2t}qquad
    mathbf{x}_3(t)=pmb{xi}^{(3)} e^{lambda_3t}$$
    Then your fundamental matrix should be
    $$pmb{psi}(t)=left(
    begin{array}{@{}ccc@{}}
    mathbf{x}_1(t)&
    mathbf{x}_2(t)&
    mathbf{x}_3(t)
    end{array}right)=left(
    begin{array}{@{}ccc@{}}
    xi_1^{(1)e^{lambda_1t}}&xi_1^{(2)e^{lambda_2t}}&xi_1^{(3)e^{lambda_3t}}\
    xi_2^{(1)e^{lambda_1t}}&xi_2^{(2)e^{lambda_2t}}&xi_2^{(3)e^{lambda_3t}}\
    xi_3^{(1)e^{lambda_1t}}&xi_3^{(2)e^{lambda_2t}}&xi_3^{(3)e^{lambda_3t}}\
    end{array}
    right)
    $$
    where $xi_n^{(m)}$ denotes the $n$th element of $pmb{xi}^{(m)}$. Note that the general solution of the differential equation is
    $$mathbf{x}=pmb{psi}(t)mathbf{c}$$
    where $mathbf{c}=(c_1,c_2,c_3)^intercal$ is a constant matrix.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Assuming you have three unique eigenvalues $(lambda_1,lambda_2,lambda_3)$ and eigenvectors $(pmb{xi}^{(1)},pmb{xi}^{(2)},pmb{xi}^{(3)})$ you should have three linearly independent solutions in the form
      $$mathbf{x}_1(t)=pmb{xi}^{(1)} e^{lambda_1t}qquad
      mathbf{x}_2(t)=pmb{xi}^{(2)} e^{lambda_2t}qquad
      mathbf{x}_3(t)=pmb{xi}^{(3)} e^{lambda_3t}$$
      Then your fundamental matrix should be
      $$pmb{psi}(t)=left(
      begin{array}{@{}ccc@{}}
      mathbf{x}_1(t)&
      mathbf{x}_2(t)&
      mathbf{x}_3(t)
      end{array}right)=left(
      begin{array}{@{}ccc@{}}
      xi_1^{(1)e^{lambda_1t}}&xi_1^{(2)e^{lambda_2t}}&xi_1^{(3)e^{lambda_3t}}\
      xi_2^{(1)e^{lambda_1t}}&xi_2^{(2)e^{lambda_2t}}&xi_2^{(3)e^{lambda_3t}}\
      xi_3^{(1)e^{lambda_1t}}&xi_3^{(2)e^{lambda_2t}}&xi_3^{(3)e^{lambda_3t}}\
      end{array}
      right)
      $$
      where $xi_n^{(m)}$ denotes the $n$th element of $pmb{xi}^{(m)}$. Note that the general solution of the differential equation is
      $$mathbf{x}=pmb{psi}(t)mathbf{c}$$
      where $mathbf{c}=(c_1,c_2,c_3)^intercal$ is a constant matrix.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Assuming you have three unique eigenvalues $(lambda_1,lambda_2,lambda_3)$ and eigenvectors $(pmb{xi}^{(1)},pmb{xi}^{(2)},pmb{xi}^{(3)})$ you should have three linearly independent solutions in the form
        $$mathbf{x}_1(t)=pmb{xi}^{(1)} e^{lambda_1t}qquad
        mathbf{x}_2(t)=pmb{xi}^{(2)} e^{lambda_2t}qquad
        mathbf{x}_3(t)=pmb{xi}^{(3)} e^{lambda_3t}$$
        Then your fundamental matrix should be
        $$pmb{psi}(t)=left(
        begin{array}{@{}ccc@{}}
        mathbf{x}_1(t)&
        mathbf{x}_2(t)&
        mathbf{x}_3(t)
        end{array}right)=left(
        begin{array}{@{}ccc@{}}
        xi_1^{(1)e^{lambda_1t}}&xi_1^{(2)e^{lambda_2t}}&xi_1^{(3)e^{lambda_3t}}\
        xi_2^{(1)e^{lambda_1t}}&xi_2^{(2)e^{lambda_2t}}&xi_2^{(3)e^{lambda_3t}}\
        xi_3^{(1)e^{lambda_1t}}&xi_3^{(2)e^{lambda_2t}}&xi_3^{(3)e^{lambda_3t}}\
        end{array}
        right)
        $$
        where $xi_n^{(m)}$ denotes the $n$th element of $pmb{xi}^{(m)}$. Note that the general solution of the differential equation is
        $$mathbf{x}=pmb{psi}(t)mathbf{c}$$
        where $mathbf{c}=(c_1,c_2,c_3)^intercal$ is a constant matrix.






        share|cite|improve this answer









        $endgroup$



        Assuming you have three unique eigenvalues $(lambda_1,lambda_2,lambda_3)$ and eigenvectors $(pmb{xi}^{(1)},pmb{xi}^{(2)},pmb{xi}^{(3)})$ you should have three linearly independent solutions in the form
        $$mathbf{x}_1(t)=pmb{xi}^{(1)} e^{lambda_1t}qquad
        mathbf{x}_2(t)=pmb{xi}^{(2)} e^{lambda_2t}qquad
        mathbf{x}_3(t)=pmb{xi}^{(3)} e^{lambda_3t}$$
        Then your fundamental matrix should be
        $$pmb{psi}(t)=left(
        begin{array}{@{}ccc@{}}
        mathbf{x}_1(t)&
        mathbf{x}_2(t)&
        mathbf{x}_3(t)
        end{array}right)=left(
        begin{array}{@{}ccc@{}}
        xi_1^{(1)e^{lambda_1t}}&xi_1^{(2)e^{lambda_2t}}&xi_1^{(3)e^{lambda_3t}}\
        xi_2^{(1)e^{lambda_1t}}&xi_2^{(2)e^{lambda_2t}}&xi_2^{(3)e^{lambda_3t}}\
        xi_3^{(1)e^{lambda_1t}}&xi_3^{(2)e^{lambda_2t}}&xi_3^{(3)e^{lambda_3t}}\
        end{array}
        right)
        $$
        where $xi_n^{(m)}$ denotes the $n$th element of $pmb{xi}^{(m)}$. Note that the general solution of the differential equation is
        $$mathbf{x}=pmb{psi}(t)mathbf{c}$$
        where $mathbf{c}=(c_1,c_2,c_3)^intercal$ is a constant matrix.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 2 '16 at 16:45









        cheesyfluffcheesyfluff

        1,482520




        1,482520






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1597269%2fwhat-is-the-fundamental-matrix-solution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?