Isomorphic ring $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$












0












$begingroup$


I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem



$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$



So I choose $I = (x), J = (x^2 + 1)$



What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)



Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem



    $mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$



    So I choose $I = (x), J = (x^2 + 1)$



    What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)



    Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem



      $mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$



      So I choose $I = (x), J = (x^2 + 1)$



      What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)



      Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?










      share|cite|improve this question











      $endgroup$




      I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem



      $mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$



      So I choose $I = (x), J = (x^2 + 1)$



      What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)



      Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?







      abstract-algebra ring-theory ideals ring-isomorphism






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 21 '18 at 12:50







      user593746

















      asked Nov 21 '18 at 11:29









      HansHans

      537




      537






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          To find an explicit isomorphism, we note that



          $$1=(-x)cdot x+1cdot(x^2+1).$$

          This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
          $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$



          Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
          $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
          The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
          $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
          Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
          $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
          and
          $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007596%2fisomorphic-ring-mathbbqx-x3x-cong-mathbbq-times-mathbbqx-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            To find an explicit isomorphism, we note that



            $$1=(-x)cdot x+1cdot(x^2+1).$$

            This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
            $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$



            Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
            $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
            The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
            $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
            Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
            $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
            and
            $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              To find an explicit isomorphism, we note that



              $$1=(-x)cdot x+1cdot(x^2+1).$$

              This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
              $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$



              Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
              $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
              The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
              $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
              Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
              $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
              and
              $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                To find an explicit isomorphism, we note that



                $$1=(-x)cdot x+1cdot(x^2+1).$$

                This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
                $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$



                Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
                $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
                The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
                $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
                Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
                $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
                and
                $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$






                share|cite|improve this answer











                $endgroup$



                To find an explicit isomorphism, we note that



                $$1=(-x)cdot x+1cdot(x^2+1).$$

                This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
                $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$



                Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
                $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
                The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
                $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
                Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
                $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
                and
                $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 10 at 23:00









                amWhy

                192k28225439




                192k28225439










                answered Nov 21 '18 at 11:48







                user593746





































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007596%2fisomorphic-ring-mathbbqx-x3x-cong-mathbbq-times-mathbbqx-x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    What does “Dominus providebit” mean?

                    Antonio Litta Visconti Arese