Find maximum value under constraints by Lagrange multipliers or another method
$begingroup$
Let $f(x,y)=(x + 2y)^2 + (3x + 4y)^2.$
Then for $(x,y)$ on the circle $x^2+y^2=1 $ what is the maximum value of $f$?
I tried to use Lagrange multiplier method with the constraint $g(x,y)= x^2 + y^2 =1.$
However, now I realize that this way is so complicated on this problem
($lambda = 15 pm sqrt{221}$)
How can I solve this problem?
lagrange-multiplier
$endgroup$
add a comment |
$begingroup$
Let $f(x,y)=(x + 2y)^2 + (3x + 4y)^2.$
Then for $(x,y)$ on the circle $x^2+y^2=1 $ what is the maximum value of $f$?
I tried to use Lagrange multiplier method with the constraint $g(x,y)= x^2 + y^2 =1.$
However, now I realize that this way is so complicated on this problem
($lambda = 15 pm sqrt{221}$)
How can I solve this problem?
lagrange-multiplier
$endgroup$
$begingroup$
Did you try using polar coordinates?
$endgroup$
– Damien
Jan 11 at 6:09
add a comment |
$begingroup$
Let $f(x,y)=(x + 2y)^2 + (3x + 4y)^2.$
Then for $(x,y)$ on the circle $x^2+y^2=1 $ what is the maximum value of $f$?
I tried to use Lagrange multiplier method with the constraint $g(x,y)= x^2 + y^2 =1.$
However, now I realize that this way is so complicated on this problem
($lambda = 15 pm sqrt{221}$)
How can I solve this problem?
lagrange-multiplier
$endgroup$
Let $f(x,y)=(x + 2y)^2 + (3x + 4y)^2.$
Then for $(x,y)$ on the circle $x^2+y^2=1 $ what is the maximum value of $f$?
I tried to use Lagrange multiplier method with the constraint $g(x,y)= x^2 + y^2 =1.$
However, now I realize that this way is so complicated on this problem
($lambda = 15 pm sqrt{221}$)
How can I solve this problem?
lagrange-multiplier
lagrange-multiplier
edited Jan 11 at 6:14
David G. Stork
10.7k31332
10.7k31332
asked Jan 11 at 5:55
hewhew
306
306
$begingroup$
Did you try using polar coordinates?
$endgroup$
– Damien
Jan 11 at 6:09
add a comment |
$begingroup$
Did you try using polar coordinates?
$endgroup$
– Damien
Jan 11 at 6:09
$begingroup$
Did you try using polar coordinates?
$endgroup$
– Damien
Jan 11 at 6:09
$begingroup$
Did you try using polar coordinates?
$endgroup$
– Damien
Jan 11 at 6:09
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
If Lagrange's is not mandatory, WLOG choose $x=cos t, y=sin t$ to find
$$f(x,y)=Acos^2t+Bsin tcos t+Csin^2t=g(t)text{(say)}$$
Use $cos2t=1-2sin^2t=2cos^2t-1,sin2t=2sin tcos t$ to find $g(t)$ to be of the form $$pcos2t+qsin2t+r$$
Now use $-sqrt{p^2+q^2}le pcos2t+qsin2tlesqrt{p^2+q^2}$
$endgroup$
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:35
add a comment |
$begingroup$
This is simple enough that you can use your constraint as a substitution, i.e., $y = sqrt{1 - x^2}$.
Then your function is:
$$f(x) = left(2 sqrt{1-x^2}+xright)^2+left(4 sqrt{1-x^2}+3 xright)^2$$
Its derivative is:
$${d f(x) over dx} = -frac{4 left(14 x^2+5 sqrt{1-x^2} x-7right)}{sqrt{1-x^2}}$$
Set it to zero and find:
$$x = left{-sqrt{frac{1}{2}+frac{5}{2 sqrt{221}}},sqrt{frac{1}{442} left(221-5 sqrt{221}right)}right} approx { -0.817416, 0.576048 }$$
where clearly one is a minimum, the other a maximum.
For "culture," here is the figure in three dimensions:
$endgroup$
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:34
$begingroup$
@hew: So perhaps a (+1) is in order?
$endgroup$
– David G. Stork
Jan 11 at 6:36
add a comment |
$begingroup$
Exact solution with Lagrange multiplier method is:
$$f_{min}=15-sqrt{221}approx0.134$$
if
$$x=frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx0.817,;
y=-frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx-0.576$$
or
$$x=-frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx-0.817,;
y=frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx0.576$$
$endgroup$
add a comment |
$begingroup$
It is possible to find the solution by using the polar coordinates:
$$f(theta) = 10cos^2theta + 20sin^2theta + 28sinthetacostheta = 10 + 10sin^2theta + 14sin2theta$$
The extrema are found by deriving:
$$f'(theta) = 20sintheta costheta + 28cos2theta = 10sin2theta + 28cos2theta = 0$$
And we get
$$theta = -frac{1}{2} arctanfrac{14}{5} + kfrac{pi}{2} $$
where $k$ is any integer between $0$ and $3$
We can check numerically that the maximum corresponds to
$$theta = -frac{1}{2} arctanfrac{14}{5} + kpi approx -0.6138 + kpi$$
where $k$ is equal to $0$ or $1$
This corresponds to $x approx 0.81754, ,y approx -0.576$ and $x approx -0.81754, ,y approx 0.576$
$endgroup$
add a comment |
$begingroup$
The maximum value of a quadratic form on the unit circle is equal to its largest eigenvalue. $f$ simplifies to $10x^2+28xy+20y^2$ and so the eigenvalues of $f$ are the roots of $lambda^2-30lambda+4$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069516%2ffind-maximum-value-under-constraints-by-lagrange-multipliers-or-another-method%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If Lagrange's is not mandatory, WLOG choose $x=cos t, y=sin t$ to find
$$f(x,y)=Acos^2t+Bsin tcos t+Csin^2t=g(t)text{(say)}$$
Use $cos2t=1-2sin^2t=2cos^2t-1,sin2t=2sin tcos t$ to find $g(t)$ to be of the form $$pcos2t+qsin2t+r$$
Now use $-sqrt{p^2+q^2}le pcos2t+qsin2tlesqrt{p^2+q^2}$
$endgroup$
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:35
add a comment |
$begingroup$
If Lagrange's is not mandatory, WLOG choose $x=cos t, y=sin t$ to find
$$f(x,y)=Acos^2t+Bsin tcos t+Csin^2t=g(t)text{(say)}$$
Use $cos2t=1-2sin^2t=2cos^2t-1,sin2t=2sin tcos t$ to find $g(t)$ to be of the form $$pcos2t+qsin2t+r$$
Now use $-sqrt{p^2+q^2}le pcos2t+qsin2tlesqrt{p^2+q^2}$
$endgroup$
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:35
add a comment |
$begingroup$
If Lagrange's is not mandatory, WLOG choose $x=cos t, y=sin t$ to find
$$f(x,y)=Acos^2t+Bsin tcos t+Csin^2t=g(t)text{(say)}$$
Use $cos2t=1-2sin^2t=2cos^2t-1,sin2t=2sin tcos t$ to find $g(t)$ to be of the form $$pcos2t+qsin2t+r$$
Now use $-sqrt{p^2+q^2}le pcos2t+qsin2tlesqrt{p^2+q^2}$
$endgroup$
If Lagrange's is not mandatory, WLOG choose $x=cos t, y=sin t$ to find
$$f(x,y)=Acos^2t+Bsin tcos t+Csin^2t=g(t)text{(say)}$$
Use $cos2t=1-2sin^2t=2cos^2t-1,sin2t=2sin tcos t$ to find $g(t)$ to be of the form $$pcos2t+qsin2t+r$$
Now use $-sqrt{p^2+q^2}le pcos2t+qsin2tlesqrt{p^2+q^2}$
answered Jan 11 at 6:08
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:35
add a comment |
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:35
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:35
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:35
add a comment |
$begingroup$
This is simple enough that you can use your constraint as a substitution, i.e., $y = sqrt{1 - x^2}$.
Then your function is:
$$f(x) = left(2 sqrt{1-x^2}+xright)^2+left(4 sqrt{1-x^2}+3 xright)^2$$
Its derivative is:
$${d f(x) over dx} = -frac{4 left(14 x^2+5 sqrt{1-x^2} x-7right)}{sqrt{1-x^2}}$$
Set it to zero and find:
$$x = left{-sqrt{frac{1}{2}+frac{5}{2 sqrt{221}}},sqrt{frac{1}{442} left(221-5 sqrt{221}right)}right} approx { -0.817416, 0.576048 }$$
where clearly one is a minimum, the other a maximum.
For "culture," here is the figure in three dimensions:
$endgroup$
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:34
$begingroup$
@hew: So perhaps a (+1) is in order?
$endgroup$
– David G. Stork
Jan 11 at 6:36
add a comment |
$begingroup$
This is simple enough that you can use your constraint as a substitution, i.e., $y = sqrt{1 - x^2}$.
Then your function is:
$$f(x) = left(2 sqrt{1-x^2}+xright)^2+left(4 sqrt{1-x^2}+3 xright)^2$$
Its derivative is:
$${d f(x) over dx} = -frac{4 left(14 x^2+5 sqrt{1-x^2} x-7right)}{sqrt{1-x^2}}$$
Set it to zero and find:
$$x = left{-sqrt{frac{1}{2}+frac{5}{2 sqrt{221}}},sqrt{frac{1}{442} left(221-5 sqrt{221}right)}right} approx { -0.817416, 0.576048 }$$
where clearly one is a minimum, the other a maximum.
For "culture," here is the figure in three dimensions:
$endgroup$
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:34
$begingroup$
@hew: So perhaps a (+1) is in order?
$endgroup$
– David G. Stork
Jan 11 at 6:36
add a comment |
$begingroup$
This is simple enough that you can use your constraint as a substitution, i.e., $y = sqrt{1 - x^2}$.
Then your function is:
$$f(x) = left(2 sqrt{1-x^2}+xright)^2+left(4 sqrt{1-x^2}+3 xright)^2$$
Its derivative is:
$${d f(x) over dx} = -frac{4 left(14 x^2+5 sqrt{1-x^2} x-7right)}{sqrt{1-x^2}}$$
Set it to zero and find:
$$x = left{-sqrt{frac{1}{2}+frac{5}{2 sqrt{221}}},sqrt{frac{1}{442} left(221-5 sqrt{221}right)}right} approx { -0.817416, 0.576048 }$$
where clearly one is a minimum, the other a maximum.
For "culture," here is the figure in three dimensions:
$endgroup$
This is simple enough that you can use your constraint as a substitution, i.e., $y = sqrt{1 - x^2}$.
Then your function is:
$$f(x) = left(2 sqrt{1-x^2}+xright)^2+left(4 sqrt{1-x^2}+3 xright)^2$$
Its derivative is:
$${d f(x) over dx} = -frac{4 left(14 x^2+5 sqrt{1-x^2} x-7right)}{sqrt{1-x^2}}$$
Set it to zero and find:
$$x = left{-sqrt{frac{1}{2}+frac{5}{2 sqrt{221}}},sqrt{frac{1}{442} left(221-5 sqrt{221}right)}right} approx { -0.817416, 0.576048 }$$
where clearly one is a minimum, the other a maximum.
For "culture," here is the figure in three dimensions:
edited Jan 11 at 19:19
answered Jan 11 at 6:05
David G. StorkDavid G. Stork
10.7k31332
10.7k31332
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:34
$begingroup$
@hew: So perhaps a (+1) is in order?
$endgroup$
– David G. Stork
Jan 11 at 6:36
add a comment |
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:34
$begingroup$
@hew: So perhaps a (+1) is in order?
$endgroup$
– David G. Stork
Jan 11 at 6:36
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:34
$begingroup$
Thank you very much!!
$endgroup$
– hew
Jan 11 at 6:34
$begingroup$
@hew: So perhaps a (+1) is in order?
$endgroup$
– David G. Stork
Jan 11 at 6:36
$begingroup$
@hew: So perhaps a (+1) is in order?
$endgroup$
– David G. Stork
Jan 11 at 6:36
add a comment |
$begingroup$
Exact solution with Lagrange multiplier method is:
$$f_{min}=15-sqrt{221}approx0.134$$
if
$$x=frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx0.817,;
y=-frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx-0.576$$
or
$$x=-frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx-0.817,;
y=frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx0.576$$
$endgroup$
add a comment |
$begingroup$
Exact solution with Lagrange multiplier method is:
$$f_{min}=15-sqrt{221}approx0.134$$
if
$$x=frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx0.817,;
y=-frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx-0.576$$
or
$$x=-frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx-0.817,;
y=frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx0.576$$
$endgroup$
add a comment |
$begingroup$
Exact solution with Lagrange multiplier method is:
$$f_{min}=15-sqrt{221}approx0.134$$
if
$$x=frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx0.817,;
y=-frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx-0.576$$
or
$$x=-frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx-0.817,;
y=frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx0.576$$
$endgroup$
Exact solution with Lagrange multiplier method is:
$$f_{min}=15-sqrt{221}approx0.134$$
if
$$x=frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx0.817,;
y=-frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx-0.576$$
or
$$x=-frac{sqrt{5 sqrt{221}+221}}{sqrt{442}}approx-0.817,;
y=frac{sqrt{221-5 sqrt{221}}}{sqrt{442}}approx0.576$$
answered Jan 11 at 8:11
Aleksas DomarkasAleksas Domarkas
8976
8976
add a comment |
add a comment |
$begingroup$
It is possible to find the solution by using the polar coordinates:
$$f(theta) = 10cos^2theta + 20sin^2theta + 28sinthetacostheta = 10 + 10sin^2theta + 14sin2theta$$
The extrema are found by deriving:
$$f'(theta) = 20sintheta costheta + 28cos2theta = 10sin2theta + 28cos2theta = 0$$
And we get
$$theta = -frac{1}{2} arctanfrac{14}{5} + kfrac{pi}{2} $$
where $k$ is any integer between $0$ and $3$
We can check numerically that the maximum corresponds to
$$theta = -frac{1}{2} arctanfrac{14}{5} + kpi approx -0.6138 + kpi$$
where $k$ is equal to $0$ or $1$
This corresponds to $x approx 0.81754, ,y approx -0.576$ and $x approx -0.81754, ,y approx 0.576$
$endgroup$
add a comment |
$begingroup$
It is possible to find the solution by using the polar coordinates:
$$f(theta) = 10cos^2theta + 20sin^2theta + 28sinthetacostheta = 10 + 10sin^2theta + 14sin2theta$$
The extrema are found by deriving:
$$f'(theta) = 20sintheta costheta + 28cos2theta = 10sin2theta + 28cos2theta = 0$$
And we get
$$theta = -frac{1}{2} arctanfrac{14}{5} + kfrac{pi}{2} $$
where $k$ is any integer between $0$ and $3$
We can check numerically that the maximum corresponds to
$$theta = -frac{1}{2} arctanfrac{14}{5} + kpi approx -0.6138 + kpi$$
where $k$ is equal to $0$ or $1$
This corresponds to $x approx 0.81754, ,y approx -0.576$ and $x approx -0.81754, ,y approx 0.576$
$endgroup$
add a comment |
$begingroup$
It is possible to find the solution by using the polar coordinates:
$$f(theta) = 10cos^2theta + 20sin^2theta + 28sinthetacostheta = 10 + 10sin^2theta + 14sin2theta$$
The extrema are found by deriving:
$$f'(theta) = 20sintheta costheta + 28cos2theta = 10sin2theta + 28cos2theta = 0$$
And we get
$$theta = -frac{1}{2} arctanfrac{14}{5} + kfrac{pi}{2} $$
where $k$ is any integer between $0$ and $3$
We can check numerically that the maximum corresponds to
$$theta = -frac{1}{2} arctanfrac{14}{5} + kpi approx -0.6138 + kpi$$
where $k$ is equal to $0$ or $1$
This corresponds to $x approx 0.81754, ,y approx -0.576$ and $x approx -0.81754, ,y approx 0.576$
$endgroup$
It is possible to find the solution by using the polar coordinates:
$$f(theta) = 10cos^2theta + 20sin^2theta + 28sinthetacostheta = 10 + 10sin^2theta + 14sin2theta$$
The extrema are found by deriving:
$$f'(theta) = 20sintheta costheta + 28cos2theta = 10sin2theta + 28cos2theta = 0$$
And we get
$$theta = -frac{1}{2} arctanfrac{14}{5} + kfrac{pi}{2} $$
where $k$ is any integer between $0$ and $3$
We can check numerically that the maximum corresponds to
$$theta = -frac{1}{2} arctanfrac{14}{5} + kpi approx -0.6138 + kpi$$
where $k$ is equal to $0$ or $1$
This corresponds to $x approx 0.81754, ,y approx -0.576$ and $x approx -0.81754, ,y approx 0.576$
edited Jan 11 at 9:37
answered Jan 11 at 9:18
DamienDamien
60714
60714
add a comment |
add a comment |
$begingroup$
The maximum value of a quadratic form on the unit circle is equal to its largest eigenvalue. $f$ simplifies to $10x^2+28xy+20y^2$ and so the eigenvalues of $f$ are the roots of $lambda^2-30lambda+4$.
$endgroup$
add a comment |
$begingroup$
The maximum value of a quadratic form on the unit circle is equal to its largest eigenvalue. $f$ simplifies to $10x^2+28xy+20y^2$ and so the eigenvalues of $f$ are the roots of $lambda^2-30lambda+4$.
$endgroup$
add a comment |
$begingroup$
The maximum value of a quadratic form on the unit circle is equal to its largest eigenvalue. $f$ simplifies to $10x^2+28xy+20y^2$ and so the eigenvalues of $f$ are the roots of $lambda^2-30lambda+4$.
$endgroup$
The maximum value of a quadratic form on the unit circle is equal to its largest eigenvalue. $f$ simplifies to $10x^2+28xy+20y^2$ and so the eigenvalues of $f$ are the roots of $lambda^2-30lambda+4$.
answered Jan 11 at 9:53
amdamd
29.7k21050
29.7k21050
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069516%2ffind-maximum-value-under-constraints-by-lagrange-multipliers-or-another-method%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Did you try using polar coordinates?
$endgroup$
– Damien
Jan 11 at 6:09