Calculation of expected value.












0














Let N be a random variable with the following distribution: $$ P(N=n)=(n+1)left(frac{3}{4}right)^{2}left(frac{1}{4}right)^{n}, n=0,1,2,...$$ Let $xi_{1},xi_{2},...$ be a sequence of independent random variables with the same Bernoulli distribution: $$P(xi_{i}=1)=p, P(xi_{i}=0)=q, p>0, p+q=1.$$ Assume that a sequence $(xi_{i})_{i=1}^{infty}$ is independent of random variable N. Let: $$eta(omega)=
left{ begin{array}{ll}
displaystylesum_{i=1}^{N(omega)}xi_{i}(omega) & textrm{when $N(omega)>0$}\
0 & textrm{when $N(omega)=0$,}\
end{array} right.
$$
and assume that $zeta=N-eta$.
Find expected value $Eleft(frac{eta}{zeta +1}right)$.



I tried to use conditional expectation: $$Ebigg(frac{eta}{zeta +1}bigg)=Ebigg(Ebigg(frac{eta}{zeta +1}|Nbigg)bigg)$$ and calculate: $$Ebigg(frac{eta}{zeta +1}|N=nbigg)=Ebigg(frac{sum_{i=1}^{n}xi_{i}(omega)}{n-sum_{i=1}^{n}xi_{i}(omega)+1}bigg)$$ but I have no idea if it's right and what to do next.










share|cite|improve this question





























    0














    Let N be a random variable with the following distribution: $$ P(N=n)=(n+1)left(frac{3}{4}right)^{2}left(frac{1}{4}right)^{n}, n=0,1,2,...$$ Let $xi_{1},xi_{2},...$ be a sequence of independent random variables with the same Bernoulli distribution: $$P(xi_{i}=1)=p, P(xi_{i}=0)=q, p>0, p+q=1.$$ Assume that a sequence $(xi_{i})_{i=1}^{infty}$ is independent of random variable N. Let: $$eta(omega)=
    left{ begin{array}{ll}
    displaystylesum_{i=1}^{N(omega)}xi_{i}(omega) & textrm{when $N(omega)>0$}\
    0 & textrm{when $N(omega)=0$,}\
    end{array} right.
    $$
    and assume that $zeta=N-eta$.
    Find expected value $Eleft(frac{eta}{zeta +1}right)$.



    I tried to use conditional expectation: $$Ebigg(frac{eta}{zeta +1}bigg)=Ebigg(Ebigg(frac{eta}{zeta +1}|Nbigg)bigg)$$ and calculate: $$Ebigg(frac{eta}{zeta +1}|N=nbigg)=Ebigg(frac{sum_{i=1}^{n}xi_{i}(omega)}{n-sum_{i=1}^{n}xi_{i}(omega)+1}bigg)$$ but I have no idea if it's right and what to do next.










    share|cite|improve this question



























      0












      0








      0


      1





      Let N be a random variable with the following distribution: $$ P(N=n)=(n+1)left(frac{3}{4}right)^{2}left(frac{1}{4}right)^{n}, n=0,1,2,...$$ Let $xi_{1},xi_{2},...$ be a sequence of independent random variables with the same Bernoulli distribution: $$P(xi_{i}=1)=p, P(xi_{i}=0)=q, p>0, p+q=1.$$ Assume that a sequence $(xi_{i})_{i=1}^{infty}$ is independent of random variable N. Let: $$eta(omega)=
      left{ begin{array}{ll}
      displaystylesum_{i=1}^{N(omega)}xi_{i}(omega) & textrm{when $N(omega)>0$}\
      0 & textrm{when $N(omega)=0$,}\
      end{array} right.
      $$
      and assume that $zeta=N-eta$.
      Find expected value $Eleft(frac{eta}{zeta +1}right)$.



      I tried to use conditional expectation: $$Ebigg(frac{eta}{zeta +1}bigg)=Ebigg(Ebigg(frac{eta}{zeta +1}|Nbigg)bigg)$$ and calculate: $$Ebigg(frac{eta}{zeta +1}|N=nbigg)=Ebigg(frac{sum_{i=1}^{n}xi_{i}(omega)}{n-sum_{i=1}^{n}xi_{i}(omega)+1}bigg)$$ but I have no idea if it's right and what to do next.










      share|cite|improve this question















      Let N be a random variable with the following distribution: $$ P(N=n)=(n+1)left(frac{3}{4}right)^{2}left(frac{1}{4}right)^{n}, n=0,1,2,...$$ Let $xi_{1},xi_{2},...$ be a sequence of independent random variables with the same Bernoulli distribution: $$P(xi_{i}=1)=p, P(xi_{i}=0)=q, p>0, p+q=1.$$ Assume that a sequence $(xi_{i})_{i=1}^{infty}$ is independent of random variable N. Let: $$eta(omega)=
      left{ begin{array}{ll}
      displaystylesum_{i=1}^{N(omega)}xi_{i}(omega) & textrm{when $N(omega)>0$}\
      0 & textrm{when $N(omega)=0$,}\
      end{array} right.
      $$
      and assume that $zeta=N-eta$.
      Find expected value $Eleft(frac{eta}{zeta +1}right)$.



      I tried to use conditional expectation: $$Ebigg(frac{eta}{zeta +1}bigg)=Ebigg(Ebigg(frac{eta}{zeta +1}|Nbigg)bigg)$$ and calculate: $$Ebigg(frac{eta}{zeta +1}|N=nbigg)=Ebigg(frac{sum_{i=1}^{n}xi_{i}(omega)}{n-sum_{i=1}^{n}xi_{i}(omega)+1}bigg)$$ but I have no idea if it's right and what to do next.







      expected-value






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 17 hours ago

























      asked 17 hours ago









      A.Fue

      115




      115






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Under condition $N=n$ random variable $eta$ has binomial distribution
          with parameters $n$ and $p$.



          This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$



          So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
          and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$



          I leave the rest to you.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061622%2fcalculation-of-expected-value%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            Under condition $N=n$ random variable $eta$ has binomial distribution
            with parameters $n$ and $p$.



            This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$



            So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
            and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$



            I leave the rest to you.






            share|cite|improve this answer


























              0














              Under condition $N=n$ random variable $eta$ has binomial distribution
              with parameters $n$ and $p$.



              This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$



              So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
              and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$



              I leave the rest to you.






              share|cite|improve this answer
























                0












                0








                0






                Under condition $N=n$ random variable $eta$ has binomial distribution
                with parameters $n$ and $p$.



                This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$



                So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
                and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$



                I leave the rest to you.






                share|cite|improve this answer












                Under condition $N=n$ random variable $eta$ has binomial distribution
                with parameters $n$ and $p$.



                This leads to: $mathbb{E}left[frac{eta}{zeta+1}mid N=nright]=sum_{k=0}^{n}binom{n}{k}p^{k}q^{n-k}frac{k}{n+1-k}=sum_{k=1}^{n}binom{n}{k-1}p^{k}q^{n-k}=frac{p}{q}sum_{k=0}^{n-1}binom{n}{k}p^{k}q^{n-k}=frac{p}{q}left(1-p^{n}right)$



                So $mathbb{E}left[frac{eta}{zeta+1}mid Nright]=frac{p}{q}left(1-p^{N}right)$
                and $mathbb{E}left[frac{eta}{zeta+1}right]=mathbb{E}left[mathbb{E}left[frac{eta}{zeta+1}mid Nright]right]=mathbb{E}frac{p}{q}left(1-p^{N}right)=frac{p}{q}-frac{p}{q}sum_{n=0}^{infty}left(n+1right)left(frac{3}{4}right)^{2}left(frac{1}{4}pright)^{n}$



                I leave the rest to you.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 16 hours ago









                drhab

                98.1k544129




                98.1k544129






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061622%2fcalculation-of-expected-value%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    What does “Dominus providebit” mean?