Find the radius of convergence of $sum_{n=0}^{infty} n!x^{n^{2}}$ [duplicate]
$begingroup$
This question already has an answer here:
Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$
3 answers
I have to find find the radius of convergence of the series $$sum_{n=0}^{infty} n!x^{n^{2}}$$.
Here $$lim_{ntoinfty} frac{(n+1)!}{n!} = infty$$. Then radius of convergence is 0. Where I'm doing wrong?
Please help
real-analysis sequences-and-series analysis power-series
$endgroup$
marked as duplicate by Key Flex, José Carlos Santos
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 11 at 7:08
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$
3 answers
I have to find find the radius of convergence of the series $$sum_{n=0}^{infty} n!x^{n^{2}}$$.
Here $$lim_{ntoinfty} frac{(n+1)!}{n!} = infty$$. Then radius of convergence is 0. Where I'm doing wrong?
Please help
real-analysis sequences-and-series analysis power-series
$endgroup$
marked as duplicate by Key Flex, José Carlos Santos
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 11 at 7:08
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
Wrong formula. What values do $a_n$ take?
$endgroup$
– xbh
Jan 11 at 5:25
add a comment |
$begingroup$
This question already has an answer here:
Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$
3 answers
I have to find find the radius of convergence of the series $$sum_{n=0}^{infty} n!x^{n^{2}}$$.
Here $$lim_{ntoinfty} frac{(n+1)!}{n!} = infty$$. Then radius of convergence is 0. Where I'm doing wrong?
Please help
real-analysis sequences-and-series analysis power-series
$endgroup$
This question already has an answer here:
Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$
3 answers
I have to find find the radius of convergence of the series $$sum_{n=0}^{infty} n!x^{n^{2}}$$.
Here $$lim_{ntoinfty} frac{(n+1)!}{n!} = infty$$. Then radius of convergence is 0. Where I'm doing wrong?
Please help
This question already has an answer here:
Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$
3 answers
real-analysis sequences-and-series analysis power-series
real-analysis sequences-and-series analysis power-series
edited Jan 11 at 7:51
Omojola Micheal
1,831324
1,831324
asked Jan 11 at 5:18
user633319user633319
384
384
marked as duplicate by Key Flex, José Carlos Santos
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 11 at 7:08
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Key Flex, José Carlos Santos
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 11 at 7:08
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
Wrong formula. What values do $a_n$ take?
$endgroup$
– xbh
Jan 11 at 5:25
add a comment |
1
$begingroup$
Wrong formula. What values do $a_n$ take?
$endgroup$
– xbh
Jan 11 at 5:25
1
1
$begingroup$
Wrong formula. What values do $a_n$ take?
$endgroup$
– xbh
Jan 11 at 5:25
$begingroup$
Wrong formula. What values do $a_n$ take?
$endgroup$
– xbh
Jan 11 at 5:25
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You have found the radius of convergence of $sum n! x^{n}$ not that of $sum n! x^{n^{2}}$. Here $a_n=0$ of $n$ is not a square and $a_n=k!$ if $n=k^{2}$. To show that the series $sum n! |x^{n^{2}}|$converges only for $|x|<1$ use Stirling's approximation. You have to observe that $e^{-n} e^{n^{2} ln, x} e^{(n+frac 1 2) ln, n} to infty$ for $|x|geq 1$ whereas the series is dominated by a series of the type $sum Ce^{-delta |x|}$ for $|x| <1$. Hence the radius of convergence is $1$.
$endgroup$
add a comment |
$begingroup$
By the Cauchy-Hadamard theorem, $r=frac1{limsup_{ntoinfty}sqrt[n^2]{n!}}=1$.
$endgroup$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have found the radius of convergence of $sum n! x^{n}$ not that of $sum n! x^{n^{2}}$. Here $a_n=0$ of $n$ is not a square and $a_n=k!$ if $n=k^{2}$. To show that the series $sum n! |x^{n^{2}}|$converges only for $|x|<1$ use Stirling's approximation. You have to observe that $e^{-n} e^{n^{2} ln, x} e^{(n+frac 1 2) ln, n} to infty$ for $|x|geq 1$ whereas the series is dominated by a series of the type $sum Ce^{-delta |x|}$ for $|x| <1$. Hence the radius of convergence is $1$.
$endgroup$
add a comment |
$begingroup$
You have found the radius of convergence of $sum n! x^{n}$ not that of $sum n! x^{n^{2}}$. Here $a_n=0$ of $n$ is not a square and $a_n=k!$ if $n=k^{2}$. To show that the series $sum n! |x^{n^{2}}|$converges only for $|x|<1$ use Stirling's approximation. You have to observe that $e^{-n} e^{n^{2} ln, x} e^{(n+frac 1 2) ln, n} to infty$ for $|x|geq 1$ whereas the series is dominated by a series of the type $sum Ce^{-delta |x|}$ for $|x| <1$. Hence the radius of convergence is $1$.
$endgroup$
add a comment |
$begingroup$
You have found the radius of convergence of $sum n! x^{n}$ not that of $sum n! x^{n^{2}}$. Here $a_n=0$ of $n$ is not a square and $a_n=k!$ if $n=k^{2}$. To show that the series $sum n! |x^{n^{2}}|$converges only for $|x|<1$ use Stirling's approximation. You have to observe that $e^{-n} e^{n^{2} ln, x} e^{(n+frac 1 2) ln, n} to infty$ for $|x|geq 1$ whereas the series is dominated by a series of the type $sum Ce^{-delta |x|}$ for $|x| <1$. Hence the radius of convergence is $1$.
$endgroup$
You have found the radius of convergence of $sum n! x^{n}$ not that of $sum n! x^{n^{2}}$. Here $a_n=0$ of $n$ is not a square and $a_n=k!$ if $n=k^{2}$. To show that the series $sum n! |x^{n^{2}}|$converges only for $|x|<1$ use Stirling's approximation. You have to observe that $e^{-n} e^{n^{2} ln, x} e^{(n+frac 1 2) ln, n} to infty$ for $|x|geq 1$ whereas the series is dominated by a series of the type $sum Ce^{-delta |x|}$ for $|x| <1$. Hence the radius of convergence is $1$.
answered Jan 11 at 5:46
Kavi Rama MurthyKavi Rama Murthy
55.4k42057
55.4k42057
add a comment |
add a comment |
$begingroup$
By the Cauchy-Hadamard theorem, $r=frac1{limsup_{ntoinfty}sqrt[n^2]{n!}}=1$.
$endgroup$
add a comment |
$begingroup$
By the Cauchy-Hadamard theorem, $r=frac1{limsup_{ntoinfty}sqrt[n^2]{n!}}=1$.
$endgroup$
add a comment |
$begingroup$
By the Cauchy-Hadamard theorem, $r=frac1{limsup_{ntoinfty}sqrt[n^2]{n!}}=1$.
$endgroup$
By the Cauchy-Hadamard theorem, $r=frac1{limsup_{ntoinfty}sqrt[n^2]{n!}}=1$.
edited Jan 11 at 16:18
answered Jan 11 at 6:18
Chris CusterChris Custer
11.6k3824
11.6k3824
add a comment |
add a comment |
1
$begingroup$
Wrong formula. What values do $a_n$ take?
$endgroup$
– xbh
Jan 11 at 5:25