Proving $ker(F)neq{0}$












0












$begingroup$


I've been posed this question:



Suppose that $F:mathbb{R}^ntomathbb{R}^m$ is a linear transformation and that $m<n$. Use the Dimension Theorem to prove that $ker(F)neq{0}$. (Hint: $mathcal{R}(F)$ is a subspace of $mathbb{R}^m$ - what does that tell you about the rank of $F$?)



I'm stuck with how to go about proving this question. All I could gather from the hint is that the rank of $Fleq m$ and I'm not even sure that is correct.
Any help would be appreciated










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    State the dimension theorem. See where the rank and the dimension of the kernel come in.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:24








  • 1




    $begingroup$
    so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
    $endgroup$
    – lohboys
    Jan 11 at 6:32








  • 1




    $begingroup$
    If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:39








  • 1




    $begingroup$
    Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
    $endgroup$
    – Shubham Johri
    Jan 11 at 6:43








  • 1




    $begingroup$
    Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:44


















0












$begingroup$


I've been posed this question:



Suppose that $F:mathbb{R}^ntomathbb{R}^m$ is a linear transformation and that $m<n$. Use the Dimension Theorem to prove that $ker(F)neq{0}$. (Hint: $mathcal{R}(F)$ is a subspace of $mathbb{R}^m$ - what does that tell you about the rank of $F$?)



I'm stuck with how to go about proving this question. All I could gather from the hint is that the rank of $Fleq m$ and I'm not even sure that is correct.
Any help would be appreciated










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    State the dimension theorem. See where the rank and the dimension of the kernel come in.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:24








  • 1




    $begingroup$
    so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
    $endgroup$
    – lohboys
    Jan 11 at 6:32








  • 1




    $begingroup$
    If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:39








  • 1




    $begingroup$
    Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
    $endgroup$
    – Shubham Johri
    Jan 11 at 6:43








  • 1




    $begingroup$
    Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:44
















0












0








0





$begingroup$


I've been posed this question:



Suppose that $F:mathbb{R}^ntomathbb{R}^m$ is a linear transformation and that $m<n$. Use the Dimension Theorem to prove that $ker(F)neq{0}$. (Hint: $mathcal{R}(F)$ is a subspace of $mathbb{R}^m$ - what does that tell you about the rank of $F$?)



I'm stuck with how to go about proving this question. All I could gather from the hint is that the rank of $Fleq m$ and I'm not even sure that is correct.
Any help would be appreciated










share|cite|improve this question











$endgroup$




I've been posed this question:



Suppose that $F:mathbb{R}^ntomathbb{R}^m$ is a linear transformation and that $m<n$. Use the Dimension Theorem to prove that $ker(F)neq{0}$. (Hint: $mathcal{R}(F)$ is a subspace of $mathbb{R}^m$ - what does that tell you about the rank of $F$?)



I'm stuck with how to go about proving this question. All I could gather from the hint is that the rank of $Fleq m$ and I'm not even sure that is correct.
Any help would be appreciated







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 11 at 6:48









user26857

39.3k124183




39.3k124183










asked Jan 11 at 6:22









lohboyslohboys

908




908








  • 5




    $begingroup$
    State the dimension theorem. See where the rank and the dimension of the kernel come in.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:24








  • 1




    $begingroup$
    so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
    $endgroup$
    – lohboys
    Jan 11 at 6:32








  • 1




    $begingroup$
    If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:39








  • 1




    $begingroup$
    Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
    $endgroup$
    – Shubham Johri
    Jan 11 at 6:43








  • 1




    $begingroup$
    Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:44
















  • 5




    $begingroup$
    State the dimension theorem. See where the rank and the dimension of the kernel come in.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:24








  • 1




    $begingroup$
    so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
    $endgroup$
    – lohboys
    Jan 11 at 6:32








  • 1




    $begingroup$
    If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:39








  • 1




    $begingroup$
    Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
    $endgroup$
    – Shubham Johri
    Jan 11 at 6:43








  • 1




    $begingroup$
    Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 11 at 6:44










5




5




$begingroup$
State the dimension theorem. See where the rank and the dimension of the kernel come in.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:24






$begingroup$
State the dimension theorem. See where the rank and the dimension of the kernel come in.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:24






1




1




$begingroup$
so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
$endgroup$
– lohboys
Jan 11 at 6:32






$begingroup$
so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
$endgroup$
– lohboys
Jan 11 at 6:32






1




1




$begingroup$
If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:39






$begingroup$
If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:39






1




1




$begingroup$
Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
$endgroup$
– Shubham Johri
Jan 11 at 6:43






$begingroup$
Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
$endgroup$
– Shubham Johri
Jan 11 at 6:43






1




1




$begingroup$
Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:44






$begingroup$
Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:44












1 Answer
1






active

oldest

votes


















0












$begingroup$

You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069533%2fproving-kerf-neq-0%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.






        share|cite|improve this answer









        $endgroup$



        You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 11 at 10:36









        Antonio BAntonio B

        316




        316






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069533%2fproving-kerf-neq-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            What does “Dominus providebit” mean?

            Antonio Litta Visconti Arese