Proving $ker(F)neq{0}$
$begingroup$
I've been posed this question:
Suppose that $F:mathbb{R}^ntomathbb{R}^m$ is a linear transformation and that $m<n$. Use the Dimension Theorem to prove that $ker(F)neq{0}$. (Hint: $mathcal{R}(F)$ is a subspace of $mathbb{R}^m$ - what does that tell you about the rank of $F$?)
I'm stuck with how to go about proving this question. All I could gather from the hint is that the rank of $Fleq m$ and I'm not even sure that is correct.
Any help would be appreciated
linear-algebra
$endgroup$
|
show 3 more comments
$begingroup$
I've been posed this question:
Suppose that $F:mathbb{R}^ntomathbb{R}^m$ is a linear transformation and that $m<n$. Use the Dimension Theorem to prove that $ker(F)neq{0}$. (Hint: $mathcal{R}(F)$ is a subspace of $mathbb{R}^m$ - what does that tell you about the rank of $F$?)
I'm stuck with how to go about proving this question. All I could gather from the hint is that the rank of $Fleq m$ and I'm not even sure that is correct.
Any help would be appreciated
linear-algebra
$endgroup$
5
$begingroup$
State the dimension theorem. See where the rank and the dimension of the kernel come in.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:24
1
$begingroup$
so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
$endgroup$
– lohboys
Jan 11 at 6:32
1
$begingroup$
If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:39
1
$begingroup$
Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
$endgroup$
– Shubham Johri
Jan 11 at 6:43
1
$begingroup$
Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:44
|
show 3 more comments
$begingroup$
I've been posed this question:
Suppose that $F:mathbb{R}^ntomathbb{R}^m$ is a linear transformation and that $m<n$. Use the Dimension Theorem to prove that $ker(F)neq{0}$. (Hint: $mathcal{R}(F)$ is a subspace of $mathbb{R}^m$ - what does that tell you about the rank of $F$?)
I'm stuck with how to go about proving this question. All I could gather from the hint is that the rank of $Fleq m$ and I'm not even sure that is correct.
Any help would be appreciated
linear-algebra
$endgroup$
I've been posed this question:
Suppose that $F:mathbb{R}^ntomathbb{R}^m$ is a linear transformation and that $m<n$. Use the Dimension Theorem to prove that $ker(F)neq{0}$. (Hint: $mathcal{R}(F)$ is a subspace of $mathbb{R}^m$ - what does that tell you about the rank of $F$?)
I'm stuck with how to go about proving this question. All I could gather from the hint is that the rank of $Fleq m$ and I'm not even sure that is correct.
Any help would be appreciated
linear-algebra
linear-algebra
edited Jan 11 at 6:48
user26857
39.3k124183
39.3k124183
asked Jan 11 at 6:22
lohboyslohboys
908
908
5
$begingroup$
State the dimension theorem. See where the rank and the dimension of the kernel come in.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:24
1
$begingroup$
so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
$endgroup$
– lohboys
Jan 11 at 6:32
1
$begingroup$
If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:39
1
$begingroup$
Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
$endgroup$
– Shubham Johri
Jan 11 at 6:43
1
$begingroup$
Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:44
|
show 3 more comments
5
$begingroup$
State the dimension theorem. See where the rank and the dimension of the kernel come in.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:24
1
$begingroup$
so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
$endgroup$
– lohboys
Jan 11 at 6:32
1
$begingroup$
If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:39
1
$begingroup$
Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
$endgroup$
– Shubham Johri
Jan 11 at 6:43
1
$begingroup$
Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:44
5
5
$begingroup$
State the dimension theorem. See where the rank and the dimension of the kernel come in.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:24
$begingroup$
State the dimension theorem. See where the rank and the dimension of the kernel come in.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:24
1
1
$begingroup$
so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
$endgroup$
– lohboys
Jan 11 at 6:32
$begingroup$
so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
$endgroup$
– lohboys
Jan 11 at 6:32
1
1
$begingroup$
If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:39
$begingroup$
If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:39
1
1
$begingroup$
Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
$endgroup$
– Shubham Johri
Jan 11 at 6:43
$begingroup$
Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
$endgroup$
– Shubham Johri
Jan 11 at 6:43
1
1
$begingroup$
Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:44
$begingroup$
Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:44
|
show 3 more comments
1 Answer
1
active
oldest
votes
$begingroup$
You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069533%2fproving-kerf-neq-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.
$endgroup$
add a comment |
$begingroup$
You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.
$endgroup$
add a comment |
$begingroup$
You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.
$endgroup$
You know that since F is linear $dim(Ran(F))+dim(Ker(F))=n$ so, like you said, $dim(Ran(F))le m$. For equality to be true, it is necessary that $dim(Ker(F))>0$ so $Ker(F)neq{0}$.
answered Jan 11 at 10:36
Antonio BAntonio B
316
316
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069533%2fproving-kerf-neq-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
$begingroup$
State the dimension theorem. See where the rank and the dimension of the kernel come in.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:24
1
$begingroup$
so far, i have: dimension theorem: $rank(A) + dimNul(A) = n$. Alternatively, $rank(A) + dimKer(F) = n$. Since $rank(F)=rank(A) leq m$, $dimKer(F) = n-rank(A) geq 0$ since, $rank(F) leq m<n$
$endgroup$
– lohboys
Jan 11 at 6:32
1
$begingroup$
If $mbox{rank } A = mbox{rank } F$, then $mbox{rank } A < n$ as well, so $dim ker F = n - mbox{rank } A$ is?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:39
1
$begingroup$
Yes, that is correct. Now since $dimker F>0,ker Fne{mathbf 0}$ as $dim{mathbf 0}=0$
$endgroup$
– Shubham Johri
Jan 11 at 6:43
1
$begingroup$
Exactly. It is positive. Now, that of course means that the kernel contains some vector other than zero, because the dimension of the zero subspace is zero. That completes the argument Write an answer below yourself.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 11 at 6:44