Unique multiplicative quadratic form on quaternion algebras












0












$begingroup$


I want to prove, that the only multiplicative quadratic form $Q$ (so $Q(xy)=Q(x)Q(y) forall x,y$) on a quaternion algebra $Big(dfrac{a,b}{F}Big)$ is the norm $mathrm{Nr}$, which is isometric to the form $langle 1,-a,-b,abrangle$ in the orthogonal basis $1,i,j,ij$.
One easily sees, that $Q(1)=Q(1^2)=Q(1)^2Rightarrow Q(1)=1$ and similarly $Q(i)^2=a^2$, $Q(j)^2=b^2$ and therfore $Q(ij)=(ab)^2$. But how do we show $Q(i)=-a$ and $Q(j)=-b$? Or is it even necessary?
It seems like I'm missing something obvious.










share|cite|improve this question











$endgroup$












  • $begingroup$
    A couple of things to keep in mind: (1) your argument that $Q(1) = 1$ is only valid if you assume $Q(1) ne 0$, and (2) in general, a quadratic form is not determined by its values on a basis.
    $endgroup$
    – Kimball
    Jan 24 at 22:06
















0












$begingroup$


I want to prove, that the only multiplicative quadratic form $Q$ (so $Q(xy)=Q(x)Q(y) forall x,y$) on a quaternion algebra $Big(dfrac{a,b}{F}Big)$ is the norm $mathrm{Nr}$, which is isometric to the form $langle 1,-a,-b,abrangle$ in the orthogonal basis $1,i,j,ij$.
One easily sees, that $Q(1)=Q(1^2)=Q(1)^2Rightarrow Q(1)=1$ and similarly $Q(i)^2=a^2$, $Q(j)^2=b^2$ and therfore $Q(ij)=(ab)^2$. But how do we show $Q(i)=-a$ and $Q(j)=-b$? Or is it even necessary?
It seems like I'm missing something obvious.










share|cite|improve this question











$endgroup$












  • $begingroup$
    A couple of things to keep in mind: (1) your argument that $Q(1) = 1$ is only valid if you assume $Q(1) ne 0$, and (2) in general, a quadratic form is not determined by its values on a basis.
    $endgroup$
    – Kimball
    Jan 24 at 22:06














0












0








0





$begingroup$


I want to prove, that the only multiplicative quadratic form $Q$ (so $Q(xy)=Q(x)Q(y) forall x,y$) on a quaternion algebra $Big(dfrac{a,b}{F}Big)$ is the norm $mathrm{Nr}$, which is isometric to the form $langle 1,-a,-b,abrangle$ in the orthogonal basis $1,i,j,ij$.
One easily sees, that $Q(1)=Q(1^2)=Q(1)^2Rightarrow Q(1)=1$ and similarly $Q(i)^2=a^2$, $Q(j)^2=b^2$ and therfore $Q(ij)=(ab)^2$. But how do we show $Q(i)=-a$ and $Q(j)=-b$? Or is it even necessary?
It seems like I'm missing something obvious.










share|cite|improve this question











$endgroup$




I want to prove, that the only multiplicative quadratic form $Q$ (so $Q(xy)=Q(x)Q(y) forall x,y$) on a quaternion algebra $Big(dfrac{a,b}{F}Big)$ is the norm $mathrm{Nr}$, which is isometric to the form $langle 1,-a,-b,abrangle$ in the orthogonal basis $1,i,j,ij$.
One easily sees, that $Q(1)=Q(1^2)=Q(1)^2Rightarrow Q(1)=1$ and similarly $Q(i)^2=a^2$, $Q(j)^2=b^2$ and therfore $Q(ij)=(ab)^2$. But how do we show $Q(i)=-a$ and $Q(j)=-b$? Or is it even necessary?
It seems like I'm missing something obvious.







norm quadratic-forms quaternions algebras






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 18:14







BananenPate

















asked Jan 24 at 16:08









BananenPateBananenPate

284




284












  • $begingroup$
    A couple of things to keep in mind: (1) your argument that $Q(1) = 1$ is only valid if you assume $Q(1) ne 0$, and (2) in general, a quadratic form is not determined by its values on a basis.
    $endgroup$
    – Kimball
    Jan 24 at 22:06


















  • $begingroup$
    A couple of things to keep in mind: (1) your argument that $Q(1) = 1$ is only valid if you assume $Q(1) ne 0$, and (2) in general, a quadratic form is not determined by its values on a basis.
    $endgroup$
    – Kimball
    Jan 24 at 22:06
















$begingroup$
A couple of things to keep in mind: (1) your argument that $Q(1) = 1$ is only valid if you assume $Q(1) ne 0$, and (2) in general, a quadratic form is not determined by its values on a basis.
$endgroup$
– Kimball
Jan 24 at 22:06




$begingroup$
A couple of things to keep in mind: (1) your argument that $Q(1) = 1$ is only valid if you assume $Q(1) ne 0$, and (2) in general, a quadratic form is not determined by its values on a basis.
$endgroup$
– Kimball
Jan 24 at 22:06










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086049%2funique-multiplicative-quadratic-form-on-quaternion-algebras%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086049%2funique-multiplicative-quadratic-form-on-quaternion-algebras%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?