Proof of infinity matrix norm
$begingroup$
Given the $l_{infty}$ matrix norm for $A{in}{Bbb{R}}^{mxn}$ is defined as: $|A|_{infty} =max_{1 leq i leq n}|a^{i}|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),
Show that:
$|A|_{infty} =max left{|Ax|_{infty} : x_{infty} le 1right} =max left{|Ax|_{infty} : x_{infty} = 1right}$
I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.
lp-spaces matrix-norms
$endgroup$
add a comment |
$begingroup$
Given the $l_{infty}$ matrix norm for $A{in}{Bbb{R}}^{mxn}$ is defined as: $|A|_{infty} =max_{1 leq i leq n}|a^{i}|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),
Show that:
$|A|_{infty} =max left{|Ax|_{infty} : x_{infty} le 1right} =max left{|Ax|_{infty} : x_{infty} = 1right}$
I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.
lp-spaces matrix-norms
$endgroup$
$begingroup$
Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
$endgroup$
– hardmath
Jan 24 at 16:44
$begingroup$
Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 24 at 16:44
$begingroup$
Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
$endgroup$
– Andy
Jan 24 at 16:46
add a comment |
$begingroup$
Given the $l_{infty}$ matrix norm for $A{in}{Bbb{R}}^{mxn}$ is defined as: $|A|_{infty} =max_{1 leq i leq n}|a^{i}|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),
Show that:
$|A|_{infty} =max left{|Ax|_{infty} : x_{infty} le 1right} =max left{|Ax|_{infty} : x_{infty} = 1right}$
I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.
lp-spaces matrix-norms
$endgroup$
Given the $l_{infty}$ matrix norm for $A{in}{Bbb{R}}^{mxn}$ is defined as: $|A|_{infty} =max_{1 leq i leq n}|a^{i}|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),
Show that:
$|A|_{infty} =max left{|Ax|_{infty} : x_{infty} le 1right} =max left{|Ax|_{infty} : x_{infty} = 1right}$
I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.
lp-spaces matrix-norms
lp-spaces matrix-norms
asked Jan 24 at 16:38
AndyAndy
1
1
$begingroup$
Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
$endgroup$
– hardmath
Jan 24 at 16:44
$begingroup$
Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 24 at 16:44
$begingroup$
Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
$endgroup$
– Andy
Jan 24 at 16:46
add a comment |
$begingroup$
Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
$endgroup$
– hardmath
Jan 24 at 16:44
$begingroup$
Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 24 at 16:44
$begingroup$
Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
$endgroup$
– Andy
Jan 24 at 16:46
$begingroup$
Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
$endgroup$
– hardmath
Jan 24 at 16:44
$begingroup$
Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
$endgroup$
– hardmath
Jan 24 at 16:44
$begingroup$
Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 24 at 16:44
$begingroup$
Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 24 at 16:44
$begingroup$
Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
$endgroup$
– Andy
Jan 24 at 16:46
$begingroup$
Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
$endgroup$
– Andy
Jan 24 at 16:46
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086091%2fproof-of-infinity-matrix-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086091%2fproof-of-infinity-matrix-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
$endgroup$
– hardmath
Jan 24 at 16:44
$begingroup$
Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 24 at 16:44
$begingroup$
Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
$endgroup$
– Andy
Jan 24 at 16:46