Proof of infinity matrix norm












0












$begingroup$


Given the $l_{infty}$ matrix norm for $A{in}{Bbb{R}}^{mxn}$ is defined as: $|A|_{infty} =max_{1 leq i leq n}|a^{i}|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),



Show that:
$|A|_{infty} =max left{|Ax|_{infty} : x_{infty} le 1right} =max left{|Ax|_{infty} : x_{infty} = 1right}$



I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
    $endgroup$
    – hardmath
    Jan 24 at 16:44










  • $begingroup$
    Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 24 at 16:44










  • $begingroup$
    Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
    $endgroup$
    – Andy
    Jan 24 at 16:46
















0












$begingroup$


Given the $l_{infty}$ matrix norm for $A{in}{Bbb{R}}^{mxn}$ is defined as: $|A|_{infty} =max_{1 leq i leq n}|a^{i}|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),



Show that:
$|A|_{infty} =max left{|Ax|_{infty} : x_{infty} le 1right} =max left{|Ax|_{infty} : x_{infty} = 1right}$



I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
    $endgroup$
    – hardmath
    Jan 24 at 16:44










  • $begingroup$
    Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 24 at 16:44










  • $begingroup$
    Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
    $endgroup$
    – Andy
    Jan 24 at 16:46














0












0








0





$begingroup$


Given the $l_{infty}$ matrix norm for $A{in}{Bbb{R}}^{mxn}$ is defined as: $|A|_{infty} =max_{1 leq i leq n}|a^{i}|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),



Show that:
$|A|_{infty} =max left{|Ax|_{infty} : x_{infty} le 1right} =max left{|Ax|_{infty} : x_{infty} = 1right}$



I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.










share|cite|improve this question









$endgroup$




Given the $l_{infty}$ matrix norm for $A{in}{Bbb{R}}^{mxn}$ is defined as: $|A|_{infty} =max_{1 leq i leq n}|a^{i}|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),



Show that:
$|A|_{infty} =max left{|Ax|_{infty} : x_{infty} le 1right} =max left{|Ax|_{infty} : x_{infty} = 1right}$



I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.







lp-spaces matrix-norms






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 24 at 16:38









AndyAndy

1




1












  • $begingroup$
    Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
    $endgroup$
    – hardmath
    Jan 24 at 16:44










  • $begingroup$
    Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 24 at 16:44










  • $begingroup$
    Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
    $endgroup$
    – Andy
    Jan 24 at 16:46


















  • $begingroup$
    Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
    $endgroup$
    – hardmath
    Jan 24 at 16:44










  • $begingroup$
    Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 24 at 16:44










  • $begingroup$
    Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
    $endgroup$
    – Andy
    Jan 24 at 16:46
















$begingroup$
Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
$endgroup$
– hardmath
Jan 24 at 16:44




$begingroup$
Welcome to Math.SE. To begin you might consider inequalities among the three expressions which you are able to prove, e.g. $max left{|Ax|_{infty} : x_{infty} le 1right} ge max left{|Ax|_{infty} : x_{infty} = 1right}$.
$endgroup$
– hardmath
Jan 24 at 16:44












$begingroup$
Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 24 at 16:44




$begingroup$
Does $||a^i||_1 = sum_{j=1}^n |a^i_j|$? i.e. the sum of absolute values of the elements of the $a^i$?
$endgroup$
– астон вілла олоф мэллбэрг
Jan 24 at 16:44












$begingroup$
Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
$endgroup$
– Andy
Jan 24 at 16:46




$begingroup$
Yes, it's the $l_{1}$ norm of the vector $a^{i}$. Should have clarified that.
$endgroup$
– Andy
Jan 24 at 16:46










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086091%2fproof-of-infinity-matrix-norm%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086091%2fproof-of-infinity-matrix-norm%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?