Prove p, assuming the following: (1) r → ¬q (2) q (3) ¬(p ∧ ¬s) ∧ (¬r → p)












0












$begingroup$


Prove p, assuming the following:




  • (1) r → ¬q assumption

  • (2) q assumption

  • (3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption

  • I need help after (4) not sure how to start this


  • (4) q → ¬r contrapostion (1)


  • (5)¬r modus ponens (2),(4)


  • (6)


  • (7)











share|cite|improve this question











$endgroup$












  • $begingroup$
    (4) is wrong....
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 24 at 16:45










  • $begingroup$
    Use Contraposition on (1) to get $q to lnot r$. Then use MP with (2) to get $lnot r$.
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 24 at 16:46


















0












$begingroup$


Prove p, assuming the following:




  • (1) r → ¬q assumption

  • (2) q assumption

  • (3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption

  • I need help after (4) not sure how to start this


  • (4) q → ¬r contrapostion (1)


  • (5)¬r modus ponens (2),(4)


  • (6)


  • (7)











share|cite|improve this question











$endgroup$












  • $begingroup$
    (4) is wrong....
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 24 at 16:45










  • $begingroup$
    Use Contraposition on (1) to get $q to lnot r$. Then use MP with (2) to get $lnot r$.
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 24 at 16:46
















0












0








0





$begingroup$


Prove p, assuming the following:




  • (1) r → ¬q assumption

  • (2) q assumption

  • (3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption

  • I need help after (4) not sure how to start this


  • (4) q → ¬r contrapostion (1)


  • (5)¬r modus ponens (2),(4)


  • (6)


  • (7)











share|cite|improve this question











$endgroup$




Prove p, assuming the following:




  • (1) r → ¬q assumption

  • (2) q assumption

  • (3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption

  • I need help after (4) not sure how to start this


  • (4) q → ¬r contrapostion (1)


  • (5)¬r modus ponens (2),(4)


  • (6)


  • (7)








discrete-mathematics propositional-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 17:44







Derek Long

















asked Jan 24 at 16:38









Derek LongDerek Long

115




115












  • $begingroup$
    (4) is wrong....
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 24 at 16:45










  • $begingroup$
    Use Contraposition on (1) to get $q to lnot r$. Then use MP with (2) to get $lnot r$.
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 24 at 16:46




















  • $begingroup$
    (4) is wrong....
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 24 at 16:45










  • $begingroup$
    Use Contraposition on (1) to get $q to lnot r$. Then use MP with (2) to get $lnot r$.
    $endgroup$
    – Mauro ALLEGRANZA
    Jan 24 at 16:46


















$begingroup$
(4) is wrong....
$endgroup$
– Mauro ALLEGRANZA
Jan 24 at 16:45




$begingroup$
(4) is wrong....
$endgroup$
– Mauro ALLEGRANZA
Jan 24 at 16:45












$begingroup$
Use Contraposition on (1) to get $q to lnot r$. Then use MP with (2) to get $lnot r$.
$endgroup$
– Mauro ALLEGRANZA
Jan 24 at 16:46






$begingroup$
Use Contraposition on (1) to get $q to lnot r$. Then use MP with (2) to get $lnot r$.
$endgroup$
– Mauro ALLEGRANZA
Jan 24 at 16:46












1 Answer
1






active

oldest

votes


















0












$begingroup$

Prove p, assuming the following:



(1) r → ¬q assumption
(2) q assumption
(3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption
I need help after (4) not sure how to start this
(4) q → ¬r contrapostion (1)
(5)¬r modus ponens (2),(4)
(6) p Modus ponens (3),(4)
I figured it out!






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086089%2fprove-p-assuming-the-following-1-r-%25e2%2586%2592-%25c2%25acq-2-q-3-%25c2%25acp-%25e2%2588%25a7-%25c2%25acs-%25e2%2588%25a7-%25c2%25acr-%25e2%2586%2592-p%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Prove p, assuming the following:



    (1) r → ¬q assumption
    (2) q assumption
    (3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption
    I need help after (4) not sure how to start this
    (4) q → ¬r contrapostion (1)
    (5)¬r modus ponens (2),(4)
    (6) p Modus ponens (3),(4)
    I figured it out!






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Prove p, assuming the following:



      (1) r → ¬q assumption
      (2) q assumption
      (3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption
      I need help after (4) not sure how to start this
      (4) q → ¬r contrapostion (1)
      (5)¬r modus ponens (2),(4)
      (6) p Modus ponens (3),(4)
      I figured it out!






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Prove p, assuming the following:



        (1) r → ¬q assumption
        (2) q assumption
        (3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption
        I need help after (4) not sure how to start this
        (4) q → ¬r contrapostion (1)
        (5)¬r modus ponens (2),(4)
        (6) p Modus ponens (3),(4)
        I figured it out!






        share|cite|improve this answer









        $endgroup$



        Prove p, assuming the following:



        (1) r → ¬q assumption
        (2) q assumption
        (3) ¬(p ∧ ¬s) ∧ (¬r → p) assumption
        I need help after (4) not sure how to start this
        (4) q → ¬r contrapostion (1)
        (5)¬r modus ponens (2),(4)
        (6) p Modus ponens (3),(4)
        I figured it out!







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 24 at 20:31









        Derek LongDerek Long

        115




        115






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086089%2fprove-p-assuming-the-following-1-r-%25e2%2586%2592-%25c2%25acq-2-q-3-%25c2%25acp-%25e2%2588%25a7-%25c2%25acs-%25e2%2588%25a7-%25c2%25acr-%25e2%2586%2592-p%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?