Distinct integer solutions to the equation $(x^2+y^2+z^2)/(x+y+z)=2n$ [closed]












-2












$begingroup$


I’ve been set this problem by my teacher, and had no idea where to start. $x, y, z$ and $n$ must be unique positive integers. I’ve found solutions where there is an equality for any of $x, y$ and $z$ but I haven’t been able to for unique positive integers, and would appreciate help.










share|cite|improve this question











$endgroup$



closed as unclear what you're asking by Namaste, Dietrich Burde, Shailesh, max_zorn, Leucippus Jan 25 at 4:18


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.














  • 2




    $begingroup$
    I think there is a problem in the formulation of your problem. One can prove that given some $n$ there are at most finitely many integer solutions $x$, $y$ and $z$. Maybe for some $n$ there is only one integer solution for $x$, $y$ and $z$?
    $endgroup$
    – quarague
    Jan 24 at 16:35










  • $begingroup$
    I think you must mean that $x,y,$ and $z$ must be distinct positive integers?
    $endgroup$
    – TonyK
    Jan 24 at 18:37
















-2












$begingroup$


I’ve been set this problem by my teacher, and had no idea where to start. $x, y, z$ and $n$ must be unique positive integers. I’ve found solutions where there is an equality for any of $x, y$ and $z$ but I haven’t been able to for unique positive integers, and would appreciate help.










share|cite|improve this question











$endgroup$



closed as unclear what you're asking by Namaste, Dietrich Burde, Shailesh, max_zorn, Leucippus Jan 25 at 4:18


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.














  • 2




    $begingroup$
    I think there is a problem in the formulation of your problem. One can prove that given some $n$ there are at most finitely many integer solutions $x$, $y$ and $z$. Maybe for some $n$ there is only one integer solution for $x$, $y$ and $z$?
    $endgroup$
    – quarague
    Jan 24 at 16:35










  • $begingroup$
    I think you must mean that $x,y,$ and $z$ must be distinct positive integers?
    $endgroup$
    – TonyK
    Jan 24 at 18:37














-2












-2








-2


1



$begingroup$


I’ve been set this problem by my teacher, and had no idea where to start. $x, y, z$ and $n$ must be unique positive integers. I’ve found solutions where there is an equality for any of $x, y$ and $z$ but I haven’t been able to for unique positive integers, and would appreciate help.










share|cite|improve this question











$endgroup$




I’ve been set this problem by my teacher, and had no idea where to start. $x, y, z$ and $n$ must be unique positive integers. I’ve found solutions where there is an equality for any of $x, y$ and $z$ but I haven’t been able to for unique positive integers, and would appreciate help.







elementary-number-theory diophantine-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 18:48







T Burch

















asked Jan 24 at 16:24









T BurchT Burch

12




12




closed as unclear what you're asking by Namaste, Dietrich Burde, Shailesh, max_zorn, Leucippus Jan 25 at 4:18


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









closed as unclear what you're asking by Namaste, Dietrich Burde, Shailesh, max_zorn, Leucippus Jan 25 at 4:18


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.










  • 2




    $begingroup$
    I think there is a problem in the formulation of your problem. One can prove that given some $n$ there are at most finitely many integer solutions $x$, $y$ and $z$. Maybe for some $n$ there is only one integer solution for $x$, $y$ and $z$?
    $endgroup$
    – quarague
    Jan 24 at 16:35










  • $begingroup$
    I think you must mean that $x,y,$ and $z$ must be distinct positive integers?
    $endgroup$
    – TonyK
    Jan 24 at 18:37














  • 2




    $begingroup$
    I think there is a problem in the formulation of your problem. One can prove that given some $n$ there are at most finitely many integer solutions $x$, $y$ and $z$. Maybe for some $n$ there is only one integer solution for $x$, $y$ and $z$?
    $endgroup$
    – quarague
    Jan 24 at 16:35










  • $begingroup$
    I think you must mean that $x,y,$ and $z$ must be distinct positive integers?
    $endgroup$
    – TonyK
    Jan 24 at 18:37








2




2




$begingroup$
I think there is a problem in the formulation of your problem. One can prove that given some $n$ there are at most finitely many integer solutions $x$, $y$ and $z$. Maybe for some $n$ there is only one integer solution for $x$, $y$ and $z$?
$endgroup$
– quarague
Jan 24 at 16:35




$begingroup$
I think there is a problem in the formulation of your problem. One can prove that given some $n$ there are at most finitely many integer solutions $x$, $y$ and $z$. Maybe for some $n$ there is only one integer solution for $x$, $y$ and $z$?
$endgroup$
– quarague
Jan 24 at 16:35












$begingroup$
I think you must mean that $x,y,$ and $z$ must be distinct positive integers?
$endgroup$
– TonyK
Jan 24 at 18:37




$begingroup$
I think you must mean that $x,y,$ and $z$ must be distinct positive integers?
$endgroup$
– TonyK
Jan 24 at 18:37










3 Answers
3






active

oldest

votes


















1












$begingroup$

There are infinitely many non-trivial solutions $x=y=z$ with $x$ even and $n=frac{x}{2}$:



$$
frac{x^2+y^2+z^2}{x+y+z}=frac{3x^2}{3x}=x=2n.
$$

So they cannot be unique.



Edit: The title now says distinct integer solutions (in the body it is still says unique integer solutions. In this case consider, for example,
$$
(x,y,z,n)=(18,12,8,7).
$$

This solves your equation in distinct integers.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    This one is quite difficult; at least, difficult to find all primitive integer solutions and prove that we have all. Taking $a=x-n,b=y-n,c=z-n,$ we are led to
    $$ a^2 + b^2 + c^2 = 3n^2. $$
    In order to get $gcd(a,b,c,n)=1,$ it is necessary that all be odd.



    I think I will leave in the zeros in the formulas for $a,b,c.$ They serve as spacers.
    $$ n = p^2 + q^2 + r^2 + s^2 $$
    $$ a = p^2 + q^2 - r^2 - s^2 + 0 , p q - 2 p r + 2 q r + 2 p s + 2 q s + 0 , r s $$
    $$ b = p^2 - q^2 + r^2 - s^2 + 2 p q - 0 , p r + 2 q r - 2 p s + 0 , q s + 2 r s$$
    $$ c = p^2 - q^2 - r^2 + s^2 - 2 p q + 2 p r + 0 , q r + 0 , p s + 2 q s + 2 r s$$



    In the table below, for each line just take the eight solutions $x=n pm a, y=n pm b,z=n pm c.$ Some of those will have $x,y,z$ positive.



    =========================



        n       x    y    z                                         p    q    r    s 
    1 ; 2 2 2 x^2+y^2+z^2: 12 x+y+z: 6 * 2n: 12 ; 1 0 0 0
    3 ; 8 4 4 x^2+y^2+z^2: 96 x+y+z: 16 * 2n: 96 ; 0 1 -1 -1
    5 ; 12 10 6 x^2+y^2+z^2: 280 x+y+z: 28 * 2n: 280 ; 0 1 0 -2
    7 ; 18 12 8 x^2+y^2+z^2: 532 x+y+z: 38 * 2n: 532 ; 1 2 1 1
    9 ; 20 20 10 x^2+y^2+z^2: 900 x+y+z: 50 * 2n: 900 ; 0 2 2 1
    9 ; 22 16 14 x^2+y^2+z^2: 936 x+y+z: 52 * 2n: 936 ; 0 2 -1 -2
    11 ; 24 24 16 x^2+y^2+z^2: 1408 x+y+z: 64 * 2n: 1408 ; 0 1 1 -3
    11 ; 28 18 16 x^2+y^2+z^2: 1364 x+y+z: 62 * 2n: 1364 ; 3 1 0 1
    11 ; 30 12 12 x^2+y^2+z^2: 1188 x+y+z: 54 * 2n: 1188 ; 3 0 -1 1
    13 ; 30 26 20 x^2+y^2+z^2: 1976 x+y+z: 76 * 2n: 1976 ; 0 2 0 -3
    13 ; 32 24 18 x^2+y^2+z^2: 1924 x+y+z: 74 * 2n: 1924 ; 2 -2 -2 -1
    15 ; 34 32 20 x^2+y^2+z^2: 2580 x+y+z: 86 * 2n: 2580 ; 3 2 1 1
    15 ; 38 26 20 x^2+y^2+z^2: 2520 x+y+z: 84 * 2n: 2520 ; 1 -1 3 -2
    15 ; 40 22 16 x^2+y^2+z^2: 2340 x+y+z: 78 * 2n: 2340 ; 1 -3 -2 -1
    17 ; 40 30 30 x^2+y^2+z^2: 3400 x+y+z: 100 * 2n: 3400 ; 0 3 -2 -2
    17 ; 40 34 24 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 4 0 -1 0
    17 ; 42 28 28 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 0 3 2 2
    17 ; 46 22 18 x^2+y^2+z^2: 2924 x+y+z: 86 * 2n: 2924 ; 3 -2 -2 0
    19 ; 42 42 24 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 -3 3 0
    19 ; 44 36 32 x^2+y^2+z^2: 4256 x+y+z: 112 * 2n: 4256 ; 0 3 -1 -3
    19 ; 48 30 30 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 0 3 -3
    19 ; 50 30 20 x^2+y^2+z^2: 3800 x+y+z: 100 * 2n: 3800 ; 1 1 1 -4
    21 ; 46 44 34 x^2+y^2+z^2: 5208 x+y+z: 124 * 2n: 5208 ; 0 2 1 -4
    21 ; 50 40 32 x^2+y^2+z^2: 5124 x+y+z: 122 * 2n: 5124 ; 2 3 2 2
    21 ; 52 40 22 x^2+y^2+z^2: 4788 x+y+z: 114 * 2n: 4788 ; 4 2 0 1
    23 ; 52 48 34 x^2+y^2+z^2: 6164 x+y+z: 134 * 2n: 6164 ; 1 -3 -3 -2
    23 ; 54 48 24 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 -2 -3 -1
    23 ; 58 42 24 x^2+y^2+z^2: 5704 x+y+z: 124 * 2n: 5704 ; 1 -3 3 2
    23 ; 60 36 30 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 3 1 2
    25 ; 56 50 42 x^2+y^2+z^2: 7400 x+y+z: 148 * 2n: 7400 ; 0 3 0 -4
    25 ; 60 44 42 x^2+y^2+z^2: 7300 x+y+z: 146 * 2n: 7300 ; 4 -2 -2 -1
    25 ; 60 48 36 x^2+y^2+z^2: 7200 x+y+z: 144 * 2n: 7200 ; 1 -2 4 -2
    25 ; 66 38 30 x^2+y^2+z^2: 6700 x+y+z: 134 * 2n: 6700 ; 1 4 2 2
    25 ; 68 30 26 x^2+y^2+z^2: 6200 x+y+z: 124 * 2n: 6200 ; 2 -1 4 -2
    n x y z p q r s


    ==========================






    share|cite|improve this answer











    $endgroup$





















      -2












      $begingroup$

      Above equation shown below:
      begin{equation}
      (x^2+y^2+z^2)/(x+y+z)=2n tag{A}
      end{equation}



      Equation $(A)$ has parametric solution:



      $x=b(a+b)$



      $y=a(7a+b)$



      $z=2ab$



      $n=(1/2)*(7a^2-2ab+b^2)$



      For $(a,b)=(1,17)$ we get:



      $(x,y,z,n)= (306,24,34,131)$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Hi Sam, thank you for your answer and welcome to the forum. I'm sorry to tell you that your answer is not useful, because you have no development and any important explication in your answer.
        $endgroup$
        – El borito
        Jan 25 at 2:48




















      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      There are infinitely many non-trivial solutions $x=y=z$ with $x$ even and $n=frac{x}{2}$:



      $$
      frac{x^2+y^2+z^2}{x+y+z}=frac{3x^2}{3x}=x=2n.
      $$

      So they cannot be unique.



      Edit: The title now says distinct integer solutions (in the body it is still says unique integer solutions. In this case consider, for example,
      $$
      (x,y,z,n)=(18,12,8,7).
      $$

      This solves your equation in distinct integers.






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        There are infinitely many non-trivial solutions $x=y=z$ with $x$ even and $n=frac{x}{2}$:



        $$
        frac{x^2+y^2+z^2}{x+y+z}=frac{3x^2}{3x}=x=2n.
        $$

        So they cannot be unique.



        Edit: The title now says distinct integer solutions (in the body it is still says unique integer solutions. In this case consider, for example,
        $$
        (x,y,z,n)=(18,12,8,7).
        $$

        This solves your equation in distinct integers.






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          There are infinitely many non-trivial solutions $x=y=z$ with $x$ even and $n=frac{x}{2}$:



          $$
          frac{x^2+y^2+z^2}{x+y+z}=frac{3x^2}{3x}=x=2n.
          $$

          So they cannot be unique.



          Edit: The title now says distinct integer solutions (in the body it is still says unique integer solutions. In this case consider, for example,
          $$
          (x,y,z,n)=(18,12,8,7).
          $$

          This solves your equation in distinct integers.






          share|cite|improve this answer











          $endgroup$



          There are infinitely many non-trivial solutions $x=y=z$ with $x$ even and $n=frac{x}{2}$:



          $$
          frac{x^2+y^2+z^2}{x+y+z}=frac{3x^2}{3x}=x=2n.
          $$

          So they cannot be unique.



          Edit: The title now says distinct integer solutions (in the body it is still says unique integer solutions. In this case consider, for example,
          $$
          (x,y,z,n)=(18,12,8,7).
          $$

          This solves your equation in distinct integers.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 24 at 20:45

























          answered Jan 24 at 16:30









          Dietrich BurdeDietrich Burde

          80.3k647104




          80.3k647104























              1












              $begingroup$

              This one is quite difficult; at least, difficult to find all primitive integer solutions and prove that we have all. Taking $a=x-n,b=y-n,c=z-n,$ we are led to
              $$ a^2 + b^2 + c^2 = 3n^2. $$
              In order to get $gcd(a,b,c,n)=1,$ it is necessary that all be odd.



              I think I will leave in the zeros in the formulas for $a,b,c.$ They serve as spacers.
              $$ n = p^2 + q^2 + r^2 + s^2 $$
              $$ a = p^2 + q^2 - r^2 - s^2 + 0 , p q - 2 p r + 2 q r + 2 p s + 2 q s + 0 , r s $$
              $$ b = p^2 - q^2 + r^2 - s^2 + 2 p q - 0 , p r + 2 q r - 2 p s + 0 , q s + 2 r s$$
              $$ c = p^2 - q^2 - r^2 + s^2 - 2 p q + 2 p r + 0 , q r + 0 , p s + 2 q s + 2 r s$$



              In the table below, for each line just take the eight solutions $x=n pm a, y=n pm b,z=n pm c.$ Some of those will have $x,y,z$ positive.



              =========================



                  n       x    y    z                                         p    q    r    s 
              1 ; 2 2 2 x^2+y^2+z^2: 12 x+y+z: 6 * 2n: 12 ; 1 0 0 0
              3 ; 8 4 4 x^2+y^2+z^2: 96 x+y+z: 16 * 2n: 96 ; 0 1 -1 -1
              5 ; 12 10 6 x^2+y^2+z^2: 280 x+y+z: 28 * 2n: 280 ; 0 1 0 -2
              7 ; 18 12 8 x^2+y^2+z^2: 532 x+y+z: 38 * 2n: 532 ; 1 2 1 1
              9 ; 20 20 10 x^2+y^2+z^2: 900 x+y+z: 50 * 2n: 900 ; 0 2 2 1
              9 ; 22 16 14 x^2+y^2+z^2: 936 x+y+z: 52 * 2n: 936 ; 0 2 -1 -2
              11 ; 24 24 16 x^2+y^2+z^2: 1408 x+y+z: 64 * 2n: 1408 ; 0 1 1 -3
              11 ; 28 18 16 x^2+y^2+z^2: 1364 x+y+z: 62 * 2n: 1364 ; 3 1 0 1
              11 ; 30 12 12 x^2+y^2+z^2: 1188 x+y+z: 54 * 2n: 1188 ; 3 0 -1 1
              13 ; 30 26 20 x^2+y^2+z^2: 1976 x+y+z: 76 * 2n: 1976 ; 0 2 0 -3
              13 ; 32 24 18 x^2+y^2+z^2: 1924 x+y+z: 74 * 2n: 1924 ; 2 -2 -2 -1
              15 ; 34 32 20 x^2+y^2+z^2: 2580 x+y+z: 86 * 2n: 2580 ; 3 2 1 1
              15 ; 38 26 20 x^2+y^2+z^2: 2520 x+y+z: 84 * 2n: 2520 ; 1 -1 3 -2
              15 ; 40 22 16 x^2+y^2+z^2: 2340 x+y+z: 78 * 2n: 2340 ; 1 -3 -2 -1
              17 ; 40 30 30 x^2+y^2+z^2: 3400 x+y+z: 100 * 2n: 3400 ; 0 3 -2 -2
              17 ; 40 34 24 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 4 0 -1 0
              17 ; 42 28 28 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 0 3 2 2
              17 ; 46 22 18 x^2+y^2+z^2: 2924 x+y+z: 86 * 2n: 2924 ; 3 -2 -2 0
              19 ; 42 42 24 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 -3 3 0
              19 ; 44 36 32 x^2+y^2+z^2: 4256 x+y+z: 112 * 2n: 4256 ; 0 3 -1 -3
              19 ; 48 30 30 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 0 3 -3
              19 ; 50 30 20 x^2+y^2+z^2: 3800 x+y+z: 100 * 2n: 3800 ; 1 1 1 -4
              21 ; 46 44 34 x^2+y^2+z^2: 5208 x+y+z: 124 * 2n: 5208 ; 0 2 1 -4
              21 ; 50 40 32 x^2+y^2+z^2: 5124 x+y+z: 122 * 2n: 5124 ; 2 3 2 2
              21 ; 52 40 22 x^2+y^2+z^2: 4788 x+y+z: 114 * 2n: 4788 ; 4 2 0 1
              23 ; 52 48 34 x^2+y^2+z^2: 6164 x+y+z: 134 * 2n: 6164 ; 1 -3 -3 -2
              23 ; 54 48 24 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 -2 -3 -1
              23 ; 58 42 24 x^2+y^2+z^2: 5704 x+y+z: 124 * 2n: 5704 ; 1 -3 3 2
              23 ; 60 36 30 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 3 1 2
              25 ; 56 50 42 x^2+y^2+z^2: 7400 x+y+z: 148 * 2n: 7400 ; 0 3 0 -4
              25 ; 60 44 42 x^2+y^2+z^2: 7300 x+y+z: 146 * 2n: 7300 ; 4 -2 -2 -1
              25 ; 60 48 36 x^2+y^2+z^2: 7200 x+y+z: 144 * 2n: 7200 ; 1 -2 4 -2
              25 ; 66 38 30 x^2+y^2+z^2: 6700 x+y+z: 134 * 2n: 6700 ; 1 4 2 2
              25 ; 68 30 26 x^2+y^2+z^2: 6200 x+y+z: 124 * 2n: 6200 ; 2 -1 4 -2
              n x y z p q r s


              ==========================






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                This one is quite difficult; at least, difficult to find all primitive integer solutions and prove that we have all. Taking $a=x-n,b=y-n,c=z-n,$ we are led to
                $$ a^2 + b^2 + c^2 = 3n^2. $$
                In order to get $gcd(a,b,c,n)=1,$ it is necessary that all be odd.



                I think I will leave in the zeros in the formulas for $a,b,c.$ They serve as spacers.
                $$ n = p^2 + q^2 + r^2 + s^2 $$
                $$ a = p^2 + q^2 - r^2 - s^2 + 0 , p q - 2 p r + 2 q r + 2 p s + 2 q s + 0 , r s $$
                $$ b = p^2 - q^2 + r^2 - s^2 + 2 p q - 0 , p r + 2 q r - 2 p s + 0 , q s + 2 r s$$
                $$ c = p^2 - q^2 - r^2 + s^2 - 2 p q + 2 p r + 0 , q r + 0 , p s + 2 q s + 2 r s$$



                In the table below, for each line just take the eight solutions $x=n pm a, y=n pm b,z=n pm c.$ Some of those will have $x,y,z$ positive.



                =========================



                    n       x    y    z                                         p    q    r    s 
                1 ; 2 2 2 x^2+y^2+z^2: 12 x+y+z: 6 * 2n: 12 ; 1 0 0 0
                3 ; 8 4 4 x^2+y^2+z^2: 96 x+y+z: 16 * 2n: 96 ; 0 1 -1 -1
                5 ; 12 10 6 x^2+y^2+z^2: 280 x+y+z: 28 * 2n: 280 ; 0 1 0 -2
                7 ; 18 12 8 x^2+y^2+z^2: 532 x+y+z: 38 * 2n: 532 ; 1 2 1 1
                9 ; 20 20 10 x^2+y^2+z^2: 900 x+y+z: 50 * 2n: 900 ; 0 2 2 1
                9 ; 22 16 14 x^2+y^2+z^2: 936 x+y+z: 52 * 2n: 936 ; 0 2 -1 -2
                11 ; 24 24 16 x^2+y^2+z^2: 1408 x+y+z: 64 * 2n: 1408 ; 0 1 1 -3
                11 ; 28 18 16 x^2+y^2+z^2: 1364 x+y+z: 62 * 2n: 1364 ; 3 1 0 1
                11 ; 30 12 12 x^2+y^2+z^2: 1188 x+y+z: 54 * 2n: 1188 ; 3 0 -1 1
                13 ; 30 26 20 x^2+y^2+z^2: 1976 x+y+z: 76 * 2n: 1976 ; 0 2 0 -3
                13 ; 32 24 18 x^2+y^2+z^2: 1924 x+y+z: 74 * 2n: 1924 ; 2 -2 -2 -1
                15 ; 34 32 20 x^2+y^2+z^2: 2580 x+y+z: 86 * 2n: 2580 ; 3 2 1 1
                15 ; 38 26 20 x^2+y^2+z^2: 2520 x+y+z: 84 * 2n: 2520 ; 1 -1 3 -2
                15 ; 40 22 16 x^2+y^2+z^2: 2340 x+y+z: 78 * 2n: 2340 ; 1 -3 -2 -1
                17 ; 40 30 30 x^2+y^2+z^2: 3400 x+y+z: 100 * 2n: 3400 ; 0 3 -2 -2
                17 ; 40 34 24 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 4 0 -1 0
                17 ; 42 28 28 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 0 3 2 2
                17 ; 46 22 18 x^2+y^2+z^2: 2924 x+y+z: 86 * 2n: 2924 ; 3 -2 -2 0
                19 ; 42 42 24 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 -3 3 0
                19 ; 44 36 32 x^2+y^2+z^2: 4256 x+y+z: 112 * 2n: 4256 ; 0 3 -1 -3
                19 ; 48 30 30 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 0 3 -3
                19 ; 50 30 20 x^2+y^2+z^2: 3800 x+y+z: 100 * 2n: 3800 ; 1 1 1 -4
                21 ; 46 44 34 x^2+y^2+z^2: 5208 x+y+z: 124 * 2n: 5208 ; 0 2 1 -4
                21 ; 50 40 32 x^2+y^2+z^2: 5124 x+y+z: 122 * 2n: 5124 ; 2 3 2 2
                21 ; 52 40 22 x^2+y^2+z^2: 4788 x+y+z: 114 * 2n: 4788 ; 4 2 0 1
                23 ; 52 48 34 x^2+y^2+z^2: 6164 x+y+z: 134 * 2n: 6164 ; 1 -3 -3 -2
                23 ; 54 48 24 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 -2 -3 -1
                23 ; 58 42 24 x^2+y^2+z^2: 5704 x+y+z: 124 * 2n: 5704 ; 1 -3 3 2
                23 ; 60 36 30 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 3 1 2
                25 ; 56 50 42 x^2+y^2+z^2: 7400 x+y+z: 148 * 2n: 7400 ; 0 3 0 -4
                25 ; 60 44 42 x^2+y^2+z^2: 7300 x+y+z: 146 * 2n: 7300 ; 4 -2 -2 -1
                25 ; 60 48 36 x^2+y^2+z^2: 7200 x+y+z: 144 * 2n: 7200 ; 1 -2 4 -2
                25 ; 66 38 30 x^2+y^2+z^2: 6700 x+y+z: 134 * 2n: 6700 ; 1 4 2 2
                25 ; 68 30 26 x^2+y^2+z^2: 6200 x+y+z: 124 * 2n: 6200 ; 2 -1 4 -2
                n x y z p q r s


                ==========================






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  This one is quite difficult; at least, difficult to find all primitive integer solutions and prove that we have all. Taking $a=x-n,b=y-n,c=z-n,$ we are led to
                  $$ a^2 + b^2 + c^2 = 3n^2. $$
                  In order to get $gcd(a,b,c,n)=1,$ it is necessary that all be odd.



                  I think I will leave in the zeros in the formulas for $a,b,c.$ They serve as spacers.
                  $$ n = p^2 + q^2 + r^2 + s^2 $$
                  $$ a = p^2 + q^2 - r^2 - s^2 + 0 , p q - 2 p r + 2 q r + 2 p s + 2 q s + 0 , r s $$
                  $$ b = p^2 - q^2 + r^2 - s^2 + 2 p q - 0 , p r + 2 q r - 2 p s + 0 , q s + 2 r s$$
                  $$ c = p^2 - q^2 - r^2 + s^2 - 2 p q + 2 p r + 0 , q r + 0 , p s + 2 q s + 2 r s$$



                  In the table below, for each line just take the eight solutions $x=n pm a, y=n pm b,z=n pm c.$ Some of those will have $x,y,z$ positive.



                  =========================



                      n       x    y    z                                         p    q    r    s 
                  1 ; 2 2 2 x^2+y^2+z^2: 12 x+y+z: 6 * 2n: 12 ; 1 0 0 0
                  3 ; 8 4 4 x^2+y^2+z^2: 96 x+y+z: 16 * 2n: 96 ; 0 1 -1 -1
                  5 ; 12 10 6 x^2+y^2+z^2: 280 x+y+z: 28 * 2n: 280 ; 0 1 0 -2
                  7 ; 18 12 8 x^2+y^2+z^2: 532 x+y+z: 38 * 2n: 532 ; 1 2 1 1
                  9 ; 20 20 10 x^2+y^2+z^2: 900 x+y+z: 50 * 2n: 900 ; 0 2 2 1
                  9 ; 22 16 14 x^2+y^2+z^2: 936 x+y+z: 52 * 2n: 936 ; 0 2 -1 -2
                  11 ; 24 24 16 x^2+y^2+z^2: 1408 x+y+z: 64 * 2n: 1408 ; 0 1 1 -3
                  11 ; 28 18 16 x^2+y^2+z^2: 1364 x+y+z: 62 * 2n: 1364 ; 3 1 0 1
                  11 ; 30 12 12 x^2+y^2+z^2: 1188 x+y+z: 54 * 2n: 1188 ; 3 0 -1 1
                  13 ; 30 26 20 x^2+y^2+z^2: 1976 x+y+z: 76 * 2n: 1976 ; 0 2 0 -3
                  13 ; 32 24 18 x^2+y^2+z^2: 1924 x+y+z: 74 * 2n: 1924 ; 2 -2 -2 -1
                  15 ; 34 32 20 x^2+y^2+z^2: 2580 x+y+z: 86 * 2n: 2580 ; 3 2 1 1
                  15 ; 38 26 20 x^2+y^2+z^2: 2520 x+y+z: 84 * 2n: 2520 ; 1 -1 3 -2
                  15 ; 40 22 16 x^2+y^2+z^2: 2340 x+y+z: 78 * 2n: 2340 ; 1 -3 -2 -1
                  17 ; 40 30 30 x^2+y^2+z^2: 3400 x+y+z: 100 * 2n: 3400 ; 0 3 -2 -2
                  17 ; 40 34 24 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 4 0 -1 0
                  17 ; 42 28 28 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 0 3 2 2
                  17 ; 46 22 18 x^2+y^2+z^2: 2924 x+y+z: 86 * 2n: 2924 ; 3 -2 -2 0
                  19 ; 42 42 24 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 -3 3 0
                  19 ; 44 36 32 x^2+y^2+z^2: 4256 x+y+z: 112 * 2n: 4256 ; 0 3 -1 -3
                  19 ; 48 30 30 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 0 3 -3
                  19 ; 50 30 20 x^2+y^2+z^2: 3800 x+y+z: 100 * 2n: 3800 ; 1 1 1 -4
                  21 ; 46 44 34 x^2+y^2+z^2: 5208 x+y+z: 124 * 2n: 5208 ; 0 2 1 -4
                  21 ; 50 40 32 x^2+y^2+z^2: 5124 x+y+z: 122 * 2n: 5124 ; 2 3 2 2
                  21 ; 52 40 22 x^2+y^2+z^2: 4788 x+y+z: 114 * 2n: 4788 ; 4 2 0 1
                  23 ; 52 48 34 x^2+y^2+z^2: 6164 x+y+z: 134 * 2n: 6164 ; 1 -3 -3 -2
                  23 ; 54 48 24 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 -2 -3 -1
                  23 ; 58 42 24 x^2+y^2+z^2: 5704 x+y+z: 124 * 2n: 5704 ; 1 -3 3 2
                  23 ; 60 36 30 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 3 1 2
                  25 ; 56 50 42 x^2+y^2+z^2: 7400 x+y+z: 148 * 2n: 7400 ; 0 3 0 -4
                  25 ; 60 44 42 x^2+y^2+z^2: 7300 x+y+z: 146 * 2n: 7300 ; 4 -2 -2 -1
                  25 ; 60 48 36 x^2+y^2+z^2: 7200 x+y+z: 144 * 2n: 7200 ; 1 -2 4 -2
                  25 ; 66 38 30 x^2+y^2+z^2: 6700 x+y+z: 134 * 2n: 6700 ; 1 4 2 2
                  25 ; 68 30 26 x^2+y^2+z^2: 6200 x+y+z: 124 * 2n: 6200 ; 2 -1 4 -2
                  n x y z p q r s


                  ==========================






                  share|cite|improve this answer











                  $endgroup$



                  This one is quite difficult; at least, difficult to find all primitive integer solutions and prove that we have all. Taking $a=x-n,b=y-n,c=z-n,$ we are led to
                  $$ a^2 + b^2 + c^2 = 3n^2. $$
                  In order to get $gcd(a,b,c,n)=1,$ it is necessary that all be odd.



                  I think I will leave in the zeros in the formulas for $a,b,c.$ They serve as spacers.
                  $$ n = p^2 + q^2 + r^2 + s^2 $$
                  $$ a = p^2 + q^2 - r^2 - s^2 + 0 , p q - 2 p r + 2 q r + 2 p s + 2 q s + 0 , r s $$
                  $$ b = p^2 - q^2 + r^2 - s^2 + 2 p q - 0 , p r + 2 q r - 2 p s + 0 , q s + 2 r s$$
                  $$ c = p^2 - q^2 - r^2 + s^2 - 2 p q + 2 p r + 0 , q r + 0 , p s + 2 q s + 2 r s$$



                  In the table below, for each line just take the eight solutions $x=n pm a, y=n pm b,z=n pm c.$ Some of those will have $x,y,z$ positive.



                  =========================



                      n       x    y    z                                         p    q    r    s 
                  1 ; 2 2 2 x^2+y^2+z^2: 12 x+y+z: 6 * 2n: 12 ; 1 0 0 0
                  3 ; 8 4 4 x^2+y^2+z^2: 96 x+y+z: 16 * 2n: 96 ; 0 1 -1 -1
                  5 ; 12 10 6 x^2+y^2+z^2: 280 x+y+z: 28 * 2n: 280 ; 0 1 0 -2
                  7 ; 18 12 8 x^2+y^2+z^2: 532 x+y+z: 38 * 2n: 532 ; 1 2 1 1
                  9 ; 20 20 10 x^2+y^2+z^2: 900 x+y+z: 50 * 2n: 900 ; 0 2 2 1
                  9 ; 22 16 14 x^2+y^2+z^2: 936 x+y+z: 52 * 2n: 936 ; 0 2 -1 -2
                  11 ; 24 24 16 x^2+y^2+z^2: 1408 x+y+z: 64 * 2n: 1408 ; 0 1 1 -3
                  11 ; 28 18 16 x^2+y^2+z^2: 1364 x+y+z: 62 * 2n: 1364 ; 3 1 0 1
                  11 ; 30 12 12 x^2+y^2+z^2: 1188 x+y+z: 54 * 2n: 1188 ; 3 0 -1 1
                  13 ; 30 26 20 x^2+y^2+z^2: 1976 x+y+z: 76 * 2n: 1976 ; 0 2 0 -3
                  13 ; 32 24 18 x^2+y^2+z^2: 1924 x+y+z: 74 * 2n: 1924 ; 2 -2 -2 -1
                  15 ; 34 32 20 x^2+y^2+z^2: 2580 x+y+z: 86 * 2n: 2580 ; 3 2 1 1
                  15 ; 38 26 20 x^2+y^2+z^2: 2520 x+y+z: 84 * 2n: 2520 ; 1 -1 3 -2
                  15 ; 40 22 16 x^2+y^2+z^2: 2340 x+y+z: 78 * 2n: 2340 ; 1 -3 -2 -1
                  17 ; 40 30 30 x^2+y^2+z^2: 3400 x+y+z: 100 * 2n: 3400 ; 0 3 -2 -2
                  17 ; 40 34 24 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 4 0 -1 0
                  17 ; 42 28 28 x^2+y^2+z^2: 3332 x+y+z: 98 * 2n: 3332 ; 0 3 2 2
                  17 ; 46 22 18 x^2+y^2+z^2: 2924 x+y+z: 86 * 2n: 2924 ; 3 -2 -2 0
                  19 ; 42 42 24 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 -3 3 0
                  19 ; 44 36 32 x^2+y^2+z^2: 4256 x+y+z: 112 * 2n: 4256 ; 0 3 -1 -3
                  19 ; 48 30 30 x^2+y^2+z^2: 4104 x+y+z: 108 * 2n: 4104 ; 1 0 3 -3
                  19 ; 50 30 20 x^2+y^2+z^2: 3800 x+y+z: 100 * 2n: 3800 ; 1 1 1 -4
                  21 ; 46 44 34 x^2+y^2+z^2: 5208 x+y+z: 124 * 2n: 5208 ; 0 2 1 -4
                  21 ; 50 40 32 x^2+y^2+z^2: 5124 x+y+z: 122 * 2n: 5124 ; 2 3 2 2
                  21 ; 52 40 22 x^2+y^2+z^2: 4788 x+y+z: 114 * 2n: 4788 ; 4 2 0 1
                  23 ; 52 48 34 x^2+y^2+z^2: 6164 x+y+z: 134 * 2n: 6164 ; 1 -3 -3 -2
                  23 ; 54 48 24 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 -2 -3 -1
                  23 ; 58 42 24 x^2+y^2+z^2: 5704 x+y+z: 124 * 2n: 5704 ; 1 -3 3 2
                  23 ; 60 36 30 x^2+y^2+z^2: 5796 x+y+z: 126 * 2n: 5796 ; 3 3 1 2
                  25 ; 56 50 42 x^2+y^2+z^2: 7400 x+y+z: 148 * 2n: 7400 ; 0 3 0 -4
                  25 ; 60 44 42 x^2+y^2+z^2: 7300 x+y+z: 146 * 2n: 7300 ; 4 -2 -2 -1
                  25 ; 60 48 36 x^2+y^2+z^2: 7200 x+y+z: 144 * 2n: 7200 ; 1 -2 4 -2
                  25 ; 66 38 30 x^2+y^2+z^2: 6700 x+y+z: 134 * 2n: 6700 ; 1 4 2 2
                  25 ; 68 30 26 x^2+y^2+z^2: 6200 x+y+z: 124 * 2n: 6200 ; 2 -1 4 -2
                  n x y z p q r s


                  ==========================







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 25 at 17:44

























                  answered Jan 24 at 17:26









                  Will JagyWill Jagy

                  104k5102201




                  104k5102201























                      -2












                      $begingroup$

                      Above equation shown below:
                      begin{equation}
                      (x^2+y^2+z^2)/(x+y+z)=2n tag{A}
                      end{equation}



                      Equation $(A)$ has parametric solution:



                      $x=b(a+b)$



                      $y=a(7a+b)$



                      $z=2ab$



                      $n=(1/2)*(7a^2-2ab+b^2)$



                      For $(a,b)=(1,17)$ we get:



                      $(x,y,z,n)= (306,24,34,131)$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Hi Sam, thank you for your answer and welcome to the forum. I'm sorry to tell you that your answer is not useful, because you have no development and any important explication in your answer.
                        $endgroup$
                        – El borito
                        Jan 25 at 2:48


















                      -2












                      $begingroup$

                      Above equation shown below:
                      begin{equation}
                      (x^2+y^2+z^2)/(x+y+z)=2n tag{A}
                      end{equation}



                      Equation $(A)$ has parametric solution:



                      $x=b(a+b)$



                      $y=a(7a+b)$



                      $z=2ab$



                      $n=(1/2)*(7a^2-2ab+b^2)$



                      For $(a,b)=(1,17)$ we get:



                      $(x,y,z,n)= (306,24,34,131)$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Hi Sam, thank you for your answer and welcome to the forum. I'm sorry to tell you that your answer is not useful, because you have no development and any important explication in your answer.
                        $endgroup$
                        – El borito
                        Jan 25 at 2:48
















                      -2












                      -2








                      -2





                      $begingroup$

                      Above equation shown below:
                      begin{equation}
                      (x^2+y^2+z^2)/(x+y+z)=2n tag{A}
                      end{equation}



                      Equation $(A)$ has parametric solution:



                      $x=b(a+b)$



                      $y=a(7a+b)$



                      $z=2ab$



                      $n=(1/2)*(7a^2-2ab+b^2)$



                      For $(a,b)=(1,17)$ we get:



                      $(x,y,z,n)= (306,24,34,131)$






                      share|cite|improve this answer











                      $endgroup$



                      Above equation shown below:
                      begin{equation}
                      (x^2+y^2+z^2)/(x+y+z)=2n tag{A}
                      end{equation}



                      Equation $(A)$ has parametric solution:



                      $x=b(a+b)$



                      $y=a(7a+b)$



                      $z=2ab$



                      $n=(1/2)*(7a^2-2ab+b^2)$



                      For $(a,b)=(1,17)$ we get:



                      $(x,y,z,n)= (306,24,34,131)$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 26 at 17:32









                      Community

                      1




                      1










                      answered Jan 25 at 2:26









                      SamSam

                      1




                      1












                      • $begingroup$
                        Hi Sam, thank you for your answer and welcome to the forum. I'm sorry to tell you that your answer is not useful, because you have no development and any important explication in your answer.
                        $endgroup$
                        – El borito
                        Jan 25 at 2:48




















                      • $begingroup$
                        Hi Sam, thank you for your answer and welcome to the forum. I'm sorry to tell you that your answer is not useful, because you have no development and any important explication in your answer.
                        $endgroup$
                        – El borito
                        Jan 25 at 2:48


















                      $begingroup$
                      Hi Sam, thank you for your answer and welcome to the forum. I'm sorry to tell you that your answer is not useful, because you have no development and any important explication in your answer.
                      $endgroup$
                      – El borito
                      Jan 25 at 2:48






                      $begingroup$
                      Hi Sam, thank you for your answer and welcome to the forum. I'm sorry to tell you that your answer is not useful, because you have no development and any important explication in your answer.
                      $endgroup$
                      – El borito
                      Jan 25 at 2:48





                      Popular posts from this blog

                      Mario Kart Wii

                      What does “Dominus providebit” mean?

                      Antonio Litta Visconti Arese