Fourier Transform Of $h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$
$begingroup$
Prove: $$h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$$ is $$H(u,v)=frac{A}{sqrt{2}}cdot e^{-frac{u^2+v^2}{2}}$$
After fourier transform
$$F(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}f(x,y)e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}Acdot e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy}dxdy$$
How should I group $-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy$ in order to integrate?
fourier-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
Prove: $$h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$$ is $$H(u,v)=frac{A}{sqrt{2}}cdot e^{-frac{u^2+v^2}{2}}$$
After fourier transform
$$F(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}f(x,y)e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}Acdot e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy}dxdy$$
How should I group $-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy$ in order to integrate?
fourier-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
Prove: $$h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$$ is $$H(u,v)=frac{A}{sqrt{2}}cdot e^{-frac{u^2+v^2}{2}}$$
After fourier transform
$$F(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}f(x,y)e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}Acdot e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy}dxdy$$
How should I group $-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy$ in order to integrate?
fourier-analysis fourier-transform
$endgroup$
Prove: $$h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$$ is $$H(u,v)=frac{A}{sqrt{2}}cdot e^{-frac{u^2+v^2}{2}}$$
After fourier transform
$$F(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}f(x,y)e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}Acdot e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$
$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy}dxdy$$
How should I group $-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy$ in order to integrate?
fourier-analysis fourier-transform
fourier-analysis fourier-transform
asked Jan 24 at 16:40
gboxgbox
5,48062262
5,48062262
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Complete squares
begin{align}
-2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
-2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
-2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
end{align}
So the integral becomes
$$
H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
$$
The integrals are fairly easy to calculate
$$
int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
$$
$endgroup$
$begingroup$
So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
$endgroup$
– gbox
Jan 24 at 17:18
1
$begingroup$
@gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
$endgroup$
– caverac
Jan 24 at 17:20
$begingroup$
yes sorry, so we still miss a sqrt in $2pi$
$endgroup$
– gbox
Jan 24 at 17:53
1
$begingroup$
@gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
$endgroup$
– caverac
Jan 24 at 18:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086097%2ffourier-transform-of-hx-y-a-cdot-e-2-pi2x2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Complete squares
begin{align}
-2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
-2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
-2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
end{align}
So the integral becomes
$$
H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
$$
The integrals are fairly easy to calculate
$$
int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
$$
$endgroup$
$begingroup$
So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
$endgroup$
– gbox
Jan 24 at 17:18
1
$begingroup$
@gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
$endgroup$
– caverac
Jan 24 at 17:20
$begingroup$
yes sorry, so we still miss a sqrt in $2pi$
$endgroup$
– gbox
Jan 24 at 17:53
1
$begingroup$
@gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
$endgroup$
– caverac
Jan 24 at 18:12
add a comment |
$begingroup$
Complete squares
begin{align}
-2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
-2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
-2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
end{align}
So the integral becomes
$$
H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
$$
The integrals are fairly easy to calculate
$$
int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
$$
$endgroup$
$begingroup$
So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
$endgroup$
– gbox
Jan 24 at 17:18
1
$begingroup$
@gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
$endgroup$
– caverac
Jan 24 at 17:20
$begingroup$
yes sorry, so we still miss a sqrt in $2pi$
$endgroup$
– gbox
Jan 24 at 17:53
1
$begingroup$
@gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
$endgroup$
– caverac
Jan 24 at 18:12
add a comment |
$begingroup$
Complete squares
begin{align}
-2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
-2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
-2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
end{align}
So the integral becomes
$$
H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
$$
The integrals are fairly easy to calculate
$$
int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
$$
$endgroup$
Complete squares
begin{align}
-2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
-2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
-2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
end{align}
So the integral becomes
$$
H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
$$
The integrals are fairly easy to calculate
$$
int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
$$
answered Jan 24 at 16:58
caveraccaverac
14.8k31130
14.8k31130
$begingroup$
So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
$endgroup$
– gbox
Jan 24 at 17:18
1
$begingroup$
@gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
$endgroup$
– caverac
Jan 24 at 17:20
$begingroup$
yes sorry, so we still miss a sqrt in $2pi$
$endgroup$
– gbox
Jan 24 at 17:53
1
$begingroup$
@gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
$endgroup$
– caverac
Jan 24 at 18:12
add a comment |
$begingroup$
So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
$endgroup$
– gbox
Jan 24 at 17:18
1
$begingroup$
@gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
$endgroup$
– caverac
Jan 24 at 17:20
$begingroup$
yes sorry, so we still miss a sqrt in $2pi$
$endgroup$
– gbox
Jan 24 at 17:53
1
$begingroup$
@gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
$endgroup$
– caverac
Jan 24 at 18:12
$begingroup$
So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
$endgroup$
– gbox
Jan 24 at 17:18
$begingroup$
So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
$endgroup$
– gbox
Jan 24 at 17:18
1
1
$begingroup$
@gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
$endgroup$
– caverac
Jan 24 at 17:20
$begingroup$
@gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
$endgroup$
– caverac
Jan 24 at 17:20
$begingroup$
yes sorry, so we still miss a sqrt in $2pi$
$endgroup$
– gbox
Jan 24 at 17:53
$begingroup$
yes sorry, so we still miss a sqrt in $2pi$
$endgroup$
– gbox
Jan 24 at 17:53
1
1
$begingroup$
@gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
$endgroup$
– caverac
Jan 24 at 18:12
$begingroup$
@gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
$endgroup$
– caverac
Jan 24 at 18:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086097%2ffourier-transform-of-hx-y-a-cdot-e-2-pi2x2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown