Fourier Transform Of $h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$












2












$begingroup$



Prove: $$h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$$ is $$H(u,v)=frac{A}{sqrt{2}}cdot e^{-frac{u^2+v^2}{2}}$$
After fourier transform




$$F(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}f(x,y)e^{-i2pi (ux+vy)}dxdy$$



$$H(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}Acdot e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$



$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$



$$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy}dxdy$$



How should I group $-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy$ in order to integrate?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$



    Prove: $$h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$$ is $$H(u,v)=frac{A}{sqrt{2}}cdot e^{-frac{u^2+v^2}{2}}$$
    After fourier transform




    $$F(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}f(x,y)e^{-i2pi (ux+vy)}dxdy$$



    $$H(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}Acdot e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$



    $$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$



    $$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy}dxdy$$



    How should I group $-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy$ in order to integrate?










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$



      Prove: $$h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$$ is $$H(u,v)=frac{A}{sqrt{2}}cdot e^{-frac{u^2+v^2}{2}}$$
      After fourier transform




      $$F(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}f(x,y)e^{-i2pi (ux+vy)}dxdy$$



      $$H(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}Acdot e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$



      $$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$



      $$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy}dxdy$$



      How should I group $-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy$ in order to integrate?










      share|cite|improve this question









      $endgroup$





      Prove: $$h(x,y)=Acdot e^{-2pi^2(x^2+y^2)}$$ is $$H(u,v)=frac{A}{sqrt{2}}cdot e^{-frac{u^2+v^2}{2}}$$
      After fourier transform




      $$F(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}f(x,y)e^{-i2pi (ux+vy)}dxdy$$



      $$H(u,v)=int_{-infty}^{infty}int_{-infty}^{infty}Acdot e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$



      $$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2(x^2+y^2)}e^{-i2pi (ux+vy)}dxdy$$



      $$H(u,v)=Aint_{-infty}^{infty}int_{-infty}^{infty}e^{-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy}dxdy$$



      How should I group $-2pi^2x^2-2pi^2y^2-i2pi ux -i2pi vy$ in order to integrate?







      fourier-analysis fourier-transform






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 24 at 16:40









      gboxgbox

      5,48062262




      5,48062262






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Complete squares



          begin{align}
          -2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
          -2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
          -2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
          end{align}



          So the integral becomes



          $$
          H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
          $$



          The integrals are fairly easy to calculate



          $$
          int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
            $endgroup$
            – gbox
            Jan 24 at 17:18








          • 1




            $begingroup$
            @gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
            $endgroup$
            – caverac
            Jan 24 at 17:20










          • $begingroup$
            yes sorry, so we still miss a sqrt in $2pi$
            $endgroup$
            – gbox
            Jan 24 at 17:53






          • 1




            $begingroup$
            @gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
            $endgroup$
            – caverac
            Jan 24 at 18:12











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086097%2ffourier-transform-of-hx-y-a-cdot-e-2-pi2x2y2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Complete squares



          begin{align}
          -2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
          -2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
          -2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
          end{align}



          So the integral becomes



          $$
          H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
          $$



          The integrals are fairly easy to calculate



          $$
          int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
            $endgroup$
            – gbox
            Jan 24 at 17:18








          • 1




            $begingroup$
            @gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
            $endgroup$
            – caverac
            Jan 24 at 17:20










          • $begingroup$
            yes sorry, so we still miss a sqrt in $2pi$
            $endgroup$
            – gbox
            Jan 24 at 17:53






          • 1




            $begingroup$
            @gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
            $endgroup$
            – caverac
            Jan 24 at 18:12
















          1












          $begingroup$

          Complete squares



          begin{align}
          -2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
          -2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
          -2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
          end{align}



          So the integral becomes



          $$
          H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
          $$



          The integrals are fairly easy to calculate



          $$
          int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
            $endgroup$
            – gbox
            Jan 24 at 17:18








          • 1




            $begingroup$
            @gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
            $endgroup$
            – caverac
            Jan 24 at 17:20










          • $begingroup$
            yes sorry, so we still miss a sqrt in $2pi$
            $endgroup$
            – gbox
            Jan 24 at 17:53






          • 1




            $begingroup$
            @gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
            $endgroup$
            – caverac
            Jan 24 at 18:12














          1












          1








          1





          $begingroup$

          Complete squares



          begin{align}
          -2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
          -2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
          -2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
          end{align}



          So the integral becomes



          $$
          H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
          $$



          The integrals are fairly easy to calculate



          $$
          int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
          $$






          share|cite|improve this answer









          $endgroup$



          Complete squares



          begin{align}
          -2pi^2 x^2 - 2pi^2y^2 - i2pi u x - i 2pi v y &=
          -2pi^2left(x + frac{i u}{pi}right)^2 - frac{u^2}{2}
          -2pi^2left(y + frac{i u}{pi}right)^2 - frac{v^2}{2}
          end{align}



          So the integral becomes



          $$
          H(u, v) = A e^{-u^2/2 - v^2/2}left(int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}xright)left(int_{-infty}^{+infty} e^{-2pi^2(y + iv/pi)^2}{rm d}yright)
          $$



          The integrals are fairly easy to calculate



          $$
          int_{-infty}^{+infty} e^{-2pi^2(x + iu/pi)^2}{rm d}x = frac{1}{sqrt{2pi}}
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 24 at 16:58









          caveraccaverac

          14.8k31130




          14.8k31130












          • $begingroup$
            So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
            $endgroup$
            – gbox
            Jan 24 at 17:18








          • 1




            $begingroup$
            @gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
            $endgroup$
            – caverac
            Jan 24 at 17:20










          • $begingroup$
            yes sorry, so we still miss a sqrt in $2pi$
            $endgroup$
            – gbox
            Jan 24 at 17:53






          • 1




            $begingroup$
            @gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
            $endgroup$
            – caverac
            Jan 24 at 18:12


















          • $begingroup$
            So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
            $endgroup$
            – gbox
            Jan 24 at 17:18








          • 1




            $begingroup$
            @gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
            $endgroup$
            – caverac
            Jan 24 at 17:20










          • $begingroup$
            yes sorry, so we still miss a sqrt in $2pi$
            $endgroup$
            – gbox
            Jan 24 at 17:53






          • 1




            $begingroup$
            @gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
            $endgroup$
            – caverac
            Jan 24 at 18:12
















          $begingroup$
          So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
          $endgroup$
          – gbox
          Jan 24 at 17:18






          $begingroup$
          So we will end up with $frac{A}{2}e^{-frac{u^2+v^2}{2}}$?
          $endgroup$
          – gbox
          Jan 24 at 17:18






          1




          1




          $begingroup$
          @gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
          $endgroup$
          – caverac
          Jan 24 at 17:20




          $begingroup$
          @gbox $(A/2pi)e^{-(u^2 + v^2)/2}$
          $endgroup$
          – caverac
          Jan 24 at 17:20












          $begingroup$
          yes sorry, so we still miss a sqrt in $2pi$
          $endgroup$
          – gbox
          Jan 24 at 17:53




          $begingroup$
          yes sorry, so we still miss a sqrt in $2pi$
          $endgroup$
          – gbox
          Jan 24 at 17:53




          1




          1




          $begingroup$
          @gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
          $endgroup$
          – caverac
          Jan 24 at 18:12




          $begingroup$
          @gbox That could be the definition of Fourier transform you are applying. There's always a factor of $2pi$ in there, authors use different conventions. You need to figure out which one is the one you're using math.stackexchange.com/questions/301860/…
          $endgroup$
          – caverac
          Jan 24 at 18:12


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086097%2ffourier-transform-of-hx-y-a-cdot-e-2-pi2x2y2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?