If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$, then find $alpha$, $beta$ in $(0,fracpi2)$












0












$begingroup$



If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$,



where $displaystyle alpha, beta in bigg(0,frac{pi}{2}bigg)$. Then value of $alpha,beta$ are




Try: I am trying to convert it into sum of square of quantity
like $$(cos^2 alpha)^2+(2sin^2 beta)^2-2cdot cos^2 alpha cdot 2sin^2 beta-4sqrt{2}cos alpha sin beta +2+4cos^2 alpha cdot sin^2 beta$$



$$(cos^2 alpha--2sin^2 beta)^2-4sqrt{2}cos alpha sin beta+4cos^2 alpha cdot sin^2 beta$$



Now i did not know how to solve it, could some help me










share|cite|improve this question











$endgroup$












  • $begingroup$
    $cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
    $endgroup$
    – DXT
    Jan 24 at 12:49


















0












$begingroup$



If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$,



where $displaystyle alpha, beta in bigg(0,frac{pi}{2}bigg)$. Then value of $alpha,beta$ are




Try: I am trying to convert it into sum of square of quantity
like $$(cos^2 alpha)^2+(2sin^2 beta)^2-2cdot cos^2 alpha cdot 2sin^2 beta-4sqrt{2}cos alpha sin beta +2+4cos^2 alpha cdot sin^2 beta$$



$$(cos^2 alpha--2sin^2 beta)^2-4sqrt{2}cos alpha sin beta+4cos^2 alpha cdot sin^2 beta$$



Now i did not know how to solve it, could some help me










share|cite|improve this question











$endgroup$












  • $begingroup$
    $cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
    $endgroup$
    – DXT
    Jan 24 at 12:49
















0












0








0





$begingroup$



If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$,



where $displaystyle alpha, beta in bigg(0,frac{pi}{2}bigg)$. Then value of $alpha,beta$ are




Try: I am trying to convert it into sum of square of quantity
like $$(cos^2 alpha)^2+(2sin^2 beta)^2-2cdot cos^2 alpha cdot 2sin^2 beta-4sqrt{2}cos alpha sin beta +2+4cos^2 alpha cdot sin^2 beta$$



$$(cos^2 alpha--2sin^2 beta)^2-4sqrt{2}cos alpha sin beta+4cos^2 alpha cdot sin^2 beta$$



Now i did not know how to solve it, could some help me










share|cite|improve this question











$endgroup$





If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$,



where $displaystyle alpha, beta in bigg(0,frac{pi}{2}bigg)$. Then value of $alpha,beta$ are




Try: I am trying to convert it into sum of square of quantity
like $$(cos^2 alpha)^2+(2sin^2 beta)^2-2cdot cos^2 alpha cdot 2sin^2 beta-4sqrt{2}cos alpha sin beta +2+4cos^2 alpha cdot sin^2 beta$$



$$(cos^2 alpha--2sin^2 beta)^2-4sqrt{2}cos alpha sin beta+4cos^2 alpha cdot sin^2 beta$$



Now i did not know how to solve it, could some help me







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 10:47









Blue

48.4k870154




48.4k870154










asked Jan 17 at 10:01









DXTDXT

5,6892630




5,6892630












  • $begingroup$
    $cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
    $endgroup$
    – DXT
    Jan 24 at 12:49




















  • $begingroup$
    $cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
    $endgroup$
    – DXT
    Jan 24 at 12:49


















$begingroup$
$cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
$endgroup$
– DXT
Jan 24 at 12:49






$begingroup$
$cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
$endgroup$
– DXT
Jan 24 at 12:49












2 Answers
2






active

oldest

votes


















2












$begingroup$

Hint:



For real $cos^2alpha,sin^2beta$



$$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$



The equality will occur if $cos^4alpha=4sin^4beta=1$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    See artofproblemsolving.com/wiki/index.php/…
    $endgroup$
    – lab bhattacharjee
    Jan 17 at 11:01



















1












$begingroup$

If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076798%2fif-cos4-alpha4-sin4-beta-4-sqrt2-cos-alpha-sin-beta-2-0-then-find%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Hint:



    For real $cos^2alpha,sin^2beta$



    $$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$



    The equality will occur if $cos^4alpha=4sin^4beta=1$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      See artofproblemsolving.com/wiki/index.php/…
      $endgroup$
      – lab bhattacharjee
      Jan 17 at 11:01
















    2












    $begingroup$

    Hint:



    For real $cos^2alpha,sin^2beta$



    $$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$



    The equality will occur if $cos^4alpha=4sin^4beta=1$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      See artofproblemsolving.com/wiki/index.php/…
      $endgroup$
      – lab bhattacharjee
      Jan 17 at 11:01














    2












    2








    2





    $begingroup$

    Hint:



    For real $cos^2alpha,sin^2beta$



    $$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$



    The equality will occur if $cos^4alpha=4sin^4beta=1$






    share|cite|improve this answer









    $endgroup$



    Hint:



    For real $cos^2alpha,sin^2beta$



    $$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$



    The equality will occur if $cos^4alpha=4sin^4beta=1$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 17 at 10:33









    lab bhattacharjeelab bhattacharjee

    225k15157275




    225k15157275








    • 1




      $begingroup$
      See artofproblemsolving.com/wiki/index.php/…
      $endgroup$
      – lab bhattacharjee
      Jan 17 at 11:01














    • 1




      $begingroup$
      See artofproblemsolving.com/wiki/index.php/…
      $endgroup$
      – lab bhattacharjee
      Jan 17 at 11:01








    1




    1




    $begingroup$
    See artofproblemsolving.com/wiki/index.php/…
    $endgroup$
    – lab bhattacharjee
    Jan 17 at 11:01




    $begingroup$
    See artofproblemsolving.com/wiki/index.php/…
    $endgroup$
    – lab bhattacharjee
    Jan 17 at 11:01











    1












    $begingroup$

    If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.






        share|cite|improve this answer









        $endgroup$



        If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 17 at 10:29









        quaraguequarague

        353110




        353110






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076798%2fif-cos4-alpha4-sin4-beta-4-sqrt2-cos-alpha-sin-beta-2-0-then-find%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            What does “Dominus providebit” mean?

            The Binding of Isaac: Rebirth/Afterbirth