Condition for which $|z-z_1|^2+|z-z_2|^2=Kinmathbb{R}$ represent a circle
$begingroup$
Let $Kinmathbb{R}$ and $z_1,z_2inmathbb{C}$.
Prove that the equation $|z-z_1|^2+|z-z_2|^2=K$ represent a circle iff $Kgeqfrac{1}{2}|z_1-z_2|^2$.
My Attempt
$$
|z|^2+|z_1|^2-2mathcal{Re}(zbar{z}_1)+|z|^2+|z_2|^2-2mathcal{Re}(zbar{z}_2)=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[mathcal{Re}(zbar{z}_1)+mathcal{Re}(zbar{z}_2)bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[ a_1x+b_1y+a_2x+b_2y bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ zbar{z}_1+zbar{z}_2 bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ z(bar{z}_1+bar{z}_2) bigg]=K\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)+Big|frac{z_1+z_2}{2}Big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2\
|z|^2+big|frac{z_1+z_2}{2}big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2-frac{1}{2}(|z_1|^2+|z_2|^2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)=frac{K}{2}+frac{|z_1|^2+|z_2|^2}{4}+frac{z_1bar{z}_2+bar{z}_1z_2}{4}-frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{4}(|z_1|^2+|z_2|^2-z_1bar{z}_2-bar{z}_1z_2)=frac{K}{2}-frac{1}{4}|z_1-z_2|^2\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{1}{4}Big[2K-|z_1-z_2|^2Big]\
implies 2Kgeq|z_1-z_2|^2implies boxed{Kgeqfrac{1}{2}|z_1-z_2|^2}
$$
As it was asked as a multiple choice question I think my attempt is a bit long and cumbersome. So, is there an easier way to solve this ?
complex-numbers vectors circle
$endgroup$
add a comment |
$begingroup$
Let $Kinmathbb{R}$ and $z_1,z_2inmathbb{C}$.
Prove that the equation $|z-z_1|^2+|z-z_2|^2=K$ represent a circle iff $Kgeqfrac{1}{2}|z_1-z_2|^2$.
My Attempt
$$
|z|^2+|z_1|^2-2mathcal{Re}(zbar{z}_1)+|z|^2+|z_2|^2-2mathcal{Re}(zbar{z}_2)=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[mathcal{Re}(zbar{z}_1)+mathcal{Re}(zbar{z}_2)bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[ a_1x+b_1y+a_2x+b_2y bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ zbar{z}_1+zbar{z}_2 bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ z(bar{z}_1+bar{z}_2) bigg]=K\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)+Big|frac{z_1+z_2}{2}Big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2\
|z|^2+big|frac{z_1+z_2}{2}big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2-frac{1}{2}(|z_1|^2+|z_2|^2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)=frac{K}{2}+frac{|z_1|^2+|z_2|^2}{4}+frac{z_1bar{z}_2+bar{z}_1z_2}{4}-frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{4}(|z_1|^2+|z_2|^2-z_1bar{z}_2-bar{z}_1z_2)=frac{K}{2}-frac{1}{4}|z_1-z_2|^2\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{1}{4}Big[2K-|z_1-z_2|^2Big]\
implies 2Kgeq|z_1-z_2|^2implies boxed{Kgeqfrac{1}{2}|z_1-z_2|^2}
$$
As it was asked as a multiple choice question I think my attempt is a bit long and cumbersome. So, is there an easier way to solve this ?
complex-numbers vectors circle
$endgroup$
add a comment |
$begingroup$
Let $Kinmathbb{R}$ and $z_1,z_2inmathbb{C}$.
Prove that the equation $|z-z_1|^2+|z-z_2|^2=K$ represent a circle iff $Kgeqfrac{1}{2}|z_1-z_2|^2$.
My Attempt
$$
|z|^2+|z_1|^2-2mathcal{Re}(zbar{z}_1)+|z|^2+|z_2|^2-2mathcal{Re}(zbar{z}_2)=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[mathcal{Re}(zbar{z}_1)+mathcal{Re}(zbar{z}_2)bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[ a_1x+b_1y+a_2x+b_2y bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ zbar{z}_1+zbar{z}_2 bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ z(bar{z}_1+bar{z}_2) bigg]=K\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)+Big|frac{z_1+z_2}{2}Big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2\
|z|^2+big|frac{z_1+z_2}{2}big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2-frac{1}{2}(|z_1|^2+|z_2|^2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)=frac{K}{2}+frac{|z_1|^2+|z_2|^2}{4}+frac{z_1bar{z}_2+bar{z}_1z_2}{4}-frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{4}(|z_1|^2+|z_2|^2-z_1bar{z}_2-bar{z}_1z_2)=frac{K}{2}-frac{1}{4}|z_1-z_2|^2\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{1}{4}Big[2K-|z_1-z_2|^2Big]\
implies 2Kgeq|z_1-z_2|^2implies boxed{Kgeqfrac{1}{2}|z_1-z_2|^2}
$$
As it was asked as a multiple choice question I think my attempt is a bit long and cumbersome. So, is there an easier way to solve this ?
complex-numbers vectors circle
$endgroup$
Let $Kinmathbb{R}$ and $z_1,z_2inmathbb{C}$.
Prove that the equation $|z-z_1|^2+|z-z_2|^2=K$ represent a circle iff $Kgeqfrac{1}{2}|z_1-z_2|^2$.
My Attempt
$$
|z|^2+|z_1|^2-2mathcal{Re}(zbar{z}_1)+|z|^2+|z_2|^2-2mathcal{Re}(zbar{z}_2)=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[mathcal{Re}(zbar{z}_1)+mathcal{Re}(zbar{z}_2)bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[ a_1x+b_1y+a_2x+b_2y bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ zbar{z}_1+zbar{z}_2 bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ z(bar{z}_1+bar{z}_2) bigg]=K\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)+Big|frac{z_1+z_2}{2}Big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2\
|z|^2+big|frac{z_1+z_2}{2}big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2-frac{1}{2}(|z_1|^2+|z_2|^2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)=frac{K}{2}+frac{|z_1|^2+|z_2|^2}{4}+frac{z_1bar{z}_2+bar{z}_1z_2}{4}-frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{4}(|z_1|^2+|z_2|^2-z_1bar{z}_2-bar{z}_1z_2)=frac{K}{2}-frac{1}{4}|z_1-z_2|^2\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{1}{4}Big[2K-|z_1-z_2|^2Big]\
implies 2Kgeq|z_1-z_2|^2implies boxed{Kgeqfrac{1}{2}|z_1-z_2|^2}
$$
As it was asked as a multiple choice question I think my attempt is a bit long and cumbersome. So, is there an easier way to solve this ?
complex-numbers vectors circle
complex-numbers vectors circle
edited Jan 17 at 19:27
ss1729
asked Jan 17 at 11:13
ss1729ss1729
1,9331923
1,9331923
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have
$$ AT^2+BT^2=K$$
Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
$$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$
$$ = 2(T-M)^2+(A-B)^2/2$$
So $$ (T-M)^2= K-(A-B)^2/4$$
and thus $4K geq (A-B)^2$ or c) on your answer sheet.
$endgroup$
1
$begingroup$
Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
$endgroup$
– ss1729
Jan 17 at 19:40
$begingroup$
You just have to know position vectors.
$endgroup$
– greedoid
Jan 17 at 19:43
$begingroup$
How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
$endgroup$
– ss1729
Jan 17 at 20:15
$begingroup$
Do you know vectors?
$endgroup$
– greedoid
Jan 17 at 21:08
$begingroup$
If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
$endgroup$
– greedoid
Jan 17 at 21:14
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076855%2fcondition-for-which-z-z-12z-z-22-k-in-mathbbr-represent-a-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have
$$ AT^2+BT^2=K$$
Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
$$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$
$$ = 2(T-M)^2+(A-B)^2/2$$
So $$ (T-M)^2= K-(A-B)^2/4$$
and thus $4K geq (A-B)^2$ or c) on your answer sheet.
$endgroup$
1
$begingroup$
Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
$endgroup$
– ss1729
Jan 17 at 19:40
$begingroup$
You just have to know position vectors.
$endgroup$
– greedoid
Jan 17 at 19:43
$begingroup$
How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
$endgroup$
– ss1729
Jan 17 at 20:15
$begingroup$
Do you know vectors?
$endgroup$
– greedoid
Jan 17 at 21:08
$begingroup$
If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
$endgroup$
– greedoid
Jan 17 at 21:14
|
show 1 more comment
$begingroup$
So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have
$$ AT^2+BT^2=K$$
Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
$$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$
$$ = 2(T-M)^2+(A-B)^2/2$$
So $$ (T-M)^2= K-(A-B)^2/4$$
and thus $4K geq (A-B)^2$ or c) on your answer sheet.
$endgroup$
1
$begingroup$
Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
$endgroup$
– ss1729
Jan 17 at 19:40
$begingroup$
You just have to know position vectors.
$endgroup$
– greedoid
Jan 17 at 19:43
$begingroup$
How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
$endgroup$
– ss1729
Jan 17 at 20:15
$begingroup$
Do you know vectors?
$endgroup$
– greedoid
Jan 17 at 21:08
$begingroup$
If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
$endgroup$
– greedoid
Jan 17 at 21:14
|
show 1 more comment
$begingroup$
So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have
$$ AT^2+BT^2=K$$
Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
$$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$
$$ = 2(T-M)^2+(A-B)^2/2$$
So $$ (T-M)^2= K-(A-B)^2/4$$
and thus $4K geq (A-B)^2$ or c) on your answer sheet.
$endgroup$
So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have
$$ AT^2+BT^2=K$$
Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
$$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$
$$ = 2(T-M)^2+(A-B)^2/2$$
So $$ (T-M)^2= K-(A-B)^2/4$$
and thus $4K geq (A-B)^2$ or c) on your answer sheet.
edited Jan 17 at 19:36
answered Jan 17 at 11:23
greedoidgreedoid
42k1152105
42k1152105
1
$begingroup$
Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
$endgroup$
– ss1729
Jan 17 at 19:40
$begingroup$
You just have to know position vectors.
$endgroup$
– greedoid
Jan 17 at 19:43
$begingroup$
How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
$endgroup$
– ss1729
Jan 17 at 20:15
$begingroup$
Do you know vectors?
$endgroup$
– greedoid
Jan 17 at 21:08
$begingroup$
If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
$endgroup$
– greedoid
Jan 17 at 21:14
|
show 1 more comment
1
$begingroup$
Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
$endgroup$
– ss1729
Jan 17 at 19:40
$begingroup$
You just have to know position vectors.
$endgroup$
– greedoid
Jan 17 at 19:43
$begingroup$
How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
$endgroup$
– ss1729
Jan 17 at 20:15
$begingroup$
Do you know vectors?
$endgroup$
– greedoid
Jan 17 at 21:08
$begingroup$
If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
$endgroup$
– greedoid
Jan 17 at 21:14
1
1
$begingroup$
Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
$endgroup$
– ss1729
Jan 17 at 19:40
$begingroup$
Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
$endgroup$
– ss1729
Jan 17 at 19:40
$begingroup$
You just have to know position vectors.
$endgroup$
– greedoid
Jan 17 at 19:43
$begingroup$
You just have to know position vectors.
$endgroup$
– greedoid
Jan 17 at 19:43
$begingroup$
How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
$endgroup$
– ss1729
Jan 17 at 20:15
$begingroup$
How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
$endgroup$
– ss1729
Jan 17 at 20:15
$begingroup$
Do you know vectors?
$endgroup$
– greedoid
Jan 17 at 21:08
$begingroup$
Do you know vectors?
$endgroup$
– greedoid
Jan 17 at 21:08
$begingroup$
If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
$endgroup$
– greedoid
Jan 17 at 21:14
$begingroup$
If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
$endgroup$
– greedoid
Jan 17 at 21:14
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076855%2fcondition-for-which-z-z-12z-z-22-k-in-mathbbr-represent-a-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown