Condition for which $|z-z_1|^2+|z-z_2|^2=Kinmathbb{R}$ represent a circle












1












$begingroup$



Let $Kinmathbb{R}$ and $z_1,z_2inmathbb{C}$.



Prove that the equation $|z-z_1|^2+|z-z_2|^2=K$ represent a circle iff $Kgeqfrac{1}{2}|z_1-z_2|^2$.




My Attempt
$$
|z|^2+|z_1|^2-2mathcal{Re}(zbar{z}_1)+|z|^2+|z_2|^2-2mathcal{Re}(zbar{z}_2)=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[mathcal{Re}(zbar{z}_1)+mathcal{Re}(zbar{z}_2)bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2bigg[ a_1x+b_1y+a_2x+b_2y bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ zbar{z}_1+zbar{z}_2 bigg]=K\
2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ z(bar{z}_1+bar{z}_2) bigg]=K\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}\
|z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)+Big|frac{z_1+z_2}{2}Big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2\
|z|^2+big|frac{z_1+z_2}{2}big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2-frac{1}{2}(|z_1|^2+|z_2|^2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)=frac{K}{2}+frac{|z_1|^2+|z_2|^2}{4}+frac{z_1bar{z}_2+bar{z}_1z_2}{4}-frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{4}(|z_1|^2+|z_2|^2-z_1bar{z}_2-bar{z}_1z_2)=frac{K}{2}-frac{1}{4}|z_1-z_2|^2\
Big|z-frac{z_1+z_2}{2}Big|^2=frac{1}{4}Big[2K-|z_1-z_2|^2Big]\
implies 2Kgeq|z_1-z_2|^2implies boxed{Kgeqfrac{1}{2}|z_1-z_2|^2}
$$



As it was asked as a multiple choice question I think my attempt is a bit long and cumbersome. So, is there an easier way to solve this ?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$



    Let $Kinmathbb{R}$ and $z_1,z_2inmathbb{C}$.



    Prove that the equation $|z-z_1|^2+|z-z_2|^2=K$ represent a circle iff $Kgeqfrac{1}{2}|z_1-z_2|^2$.




    My Attempt
    $$
    |z|^2+|z_1|^2-2mathcal{Re}(zbar{z}_1)+|z|^2+|z_2|^2-2mathcal{Re}(zbar{z}_2)=K\
    2|z|^2+|z_1|^2+|z_2|^2-2bigg[mathcal{Re}(zbar{z}_1)+mathcal{Re}(zbar{z}_2)bigg]=K\
    2|z|^2+|z_1|^2+|z_2|^2-2bigg[ a_1x+b_1y+a_2x+b_2y bigg]=K\
    2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ zbar{z}_1+zbar{z}_2 bigg]=K\
    2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ z(bar{z}_1+bar{z}_2) bigg]=K\
    |z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}\
    |z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)+Big|frac{z_1+z_2}{2}Big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2\
    |z|^2+big|frac{z_1+z_2}{2}big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2-frac{1}{2}(|z_1|^2+|z_2|^2)\
    Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)=frac{K}{2}+frac{|z_1|^2+|z_2|^2}{4}+frac{z_1bar{z}_2+bar{z}_1z_2}{4}-frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)\
    Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{4}(|z_1|^2+|z_2|^2-z_1bar{z}_2-bar{z}_1z_2)=frac{K}{2}-frac{1}{4}|z_1-z_2|^2\
    Big|z-frac{z_1+z_2}{2}Big|^2=frac{1}{4}Big[2K-|z_1-z_2|^2Big]\
    implies 2Kgeq|z_1-z_2|^2implies boxed{Kgeqfrac{1}{2}|z_1-z_2|^2}
    $$



    As it was asked as a multiple choice question I think my attempt is a bit long and cumbersome. So, is there an easier way to solve this ?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$



      Let $Kinmathbb{R}$ and $z_1,z_2inmathbb{C}$.



      Prove that the equation $|z-z_1|^2+|z-z_2|^2=K$ represent a circle iff $Kgeqfrac{1}{2}|z_1-z_2|^2$.




      My Attempt
      $$
      |z|^2+|z_1|^2-2mathcal{Re}(zbar{z}_1)+|z|^2+|z_2|^2-2mathcal{Re}(zbar{z}_2)=K\
      2|z|^2+|z_1|^2+|z_2|^2-2bigg[mathcal{Re}(zbar{z}_1)+mathcal{Re}(zbar{z}_2)bigg]=K\
      2|z|^2+|z_1|^2+|z_2|^2-2bigg[ a_1x+b_1y+a_2x+b_2y bigg]=K\
      2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ zbar{z}_1+zbar{z}_2 bigg]=K\
      2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ z(bar{z}_1+bar{z}_2) bigg]=K\
      |z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}\
      |z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)+Big|frac{z_1+z_2}{2}Big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2\
      |z|^2+big|frac{z_1+z_2}{2}big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2-frac{1}{2}(|z_1|^2+|z_2|^2)\
      Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)=frac{K}{2}+frac{|z_1|^2+|z_2|^2}{4}+frac{z_1bar{z}_2+bar{z}_1z_2}{4}-frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)\
      Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{4}(|z_1|^2+|z_2|^2-z_1bar{z}_2-bar{z}_1z_2)=frac{K}{2}-frac{1}{4}|z_1-z_2|^2\
      Big|z-frac{z_1+z_2}{2}Big|^2=frac{1}{4}Big[2K-|z_1-z_2|^2Big]\
      implies 2Kgeq|z_1-z_2|^2implies boxed{Kgeqfrac{1}{2}|z_1-z_2|^2}
      $$



      As it was asked as a multiple choice question I think my attempt is a bit long and cumbersome. So, is there an easier way to solve this ?










      share|cite|improve this question











      $endgroup$





      Let $Kinmathbb{R}$ and $z_1,z_2inmathbb{C}$.



      Prove that the equation $|z-z_1|^2+|z-z_2|^2=K$ represent a circle iff $Kgeqfrac{1}{2}|z_1-z_2|^2$.




      My Attempt
      $$
      |z|^2+|z_1|^2-2mathcal{Re}(zbar{z}_1)+|z|^2+|z_2|^2-2mathcal{Re}(zbar{z}_2)=K\
      2|z|^2+|z_1|^2+|z_2|^2-2bigg[mathcal{Re}(zbar{z}_1)+mathcal{Re}(zbar{z}_2)bigg]=K\
      2|z|^2+|z_1|^2+|z_2|^2-2bigg[ a_1x+b_1y+a_2x+b_2y bigg]=K\
      2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ zbar{z}_1+zbar{z}_2 bigg]=K\
      2|z|^2+|z_1|^2+|z_2|^2-2mathcal{Re}bigg[ z(bar{z}_1+bar{z}_2) bigg]=K\
      |z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}\
      |z|^2+frac{1}{2}(|z_1|^2+|z_2|^2)+Big|frac{z_1+z_2}{2}Big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2\
      |z|^2+big|frac{z_1+z_2}{2}big|^2-2mathcal{Re}Big(z.frac{bar{z}_1+bar{z}_2}{2}Big)=frac{K}{2}+Big|frac{z_1+z_2}{2}Big|^2-frac{1}{2}(|z_1|^2+|z_2|^2)\
      Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)=frac{K}{2}+frac{|z_1|^2+|z_2|^2}{4}+frac{z_1bar{z}_2+bar{z}_1z_2}{4}-frac{1}{2}(z_1bar{z}_2+bar{z}_1z_2)\
      Big|z-frac{z_1+z_2}{2}Big|^2=frac{K}{2}+frac{1}{4}(|z_1|^2+|z_2|^2-z_1bar{z}_2-bar{z}_1z_2)=frac{K}{2}-frac{1}{4}|z_1-z_2|^2\
      Big|z-frac{z_1+z_2}{2}Big|^2=frac{1}{4}Big[2K-|z_1-z_2|^2Big]\
      implies 2Kgeq|z_1-z_2|^2implies boxed{Kgeqfrac{1}{2}|z_1-z_2|^2}
      $$



      As it was asked as a multiple choice question I think my attempt is a bit long and cumbersome. So, is there an easier way to solve this ?







      complex-numbers vectors circle






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 17 at 19:27







      ss1729

















      asked Jan 17 at 11:13









      ss1729ss1729

      1,9331923




      1,9331923






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have



          $$ AT^2+BT^2=K$$



          Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
          $$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$



          $$ = 2(T-M)^2+(A-B)^2/2$$



          So $$ (T-M)^2= K-(A-B)^2/4$$



          and thus $4K geq (A-B)^2$ or c) on your answer sheet.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
            $endgroup$
            – ss1729
            Jan 17 at 19:40












          • $begingroup$
            You just have to know position vectors.
            $endgroup$
            – greedoid
            Jan 17 at 19:43










          • $begingroup$
            How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
            $endgroup$
            – ss1729
            Jan 17 at 20:15










          • $begingroup$
            Do you know vectors?
            $endgroup$
            – greedoid
            Jan 17 at 21:08










          • $begingroup$
            If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
            $endgroup$
            – greedoid
            Jan 17 at 21:14











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076855%2fcondition-for-which-z-z-12z-z-22-k-in-mathbbr-represent-a-circle%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have



          $$ AT^2+BT^2=K$$



          Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
          $$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$



          $$ = 2(T-M)^2+(A-B)^2/2$$



          So $$ (T-M)^2= K-(A-B)^2/4$$



          and thus $4K geq (A-B)^2$ or c) on your answer sheet.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
            $endgroup$
            – ss1729
            Jan 17 at 19:40












          • $begingroup$
            You just have to know position vectors.
            $endgroup$
            – greedoid
            Jan 17 at 19:43










          • $begingroup$
            How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
            $endgroup$
            – ss1729
            Jan 17 at 20:15










          • $begingroup$
            Do you know vectors?
            $endgroup$
            – greedoid
            Jan 17 at 21:08










          • $begingroup$
            If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
            $endgroup$
            – greedoid
            Jan 17 at 21:14
















          2












          $begingroup$

          So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have



          $$ AT^2+BT^2=K$$



          Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
          $$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$



          $$ = 2(T-M)^2+(A-B)^2/2$$



          So $$ (T-M)^2= K-(A-B)^2/4$$



          and thus $4K geq (A-B)^2$ or c) on your answer sheet.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
            $endgroup$
            – ss1729
            Jan 17 at 19:40












          • $begingroup$
            You just have to know position vectors.
            $endgroup$
            – greedoid
            Jan 17 at 19:43










          • $begingroup$
            How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
            $endgroup$
            – ss1729
            Jan 17 at 20:15










          • $begingroup$
            Do you know vectors?
            $endgroup$
            – greedoid
            Jan 17 at 21:08










          • $begingroup$
            If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
            $endgroup$
            – greedoid
            Jan 17 at 21:14














          2












          2








          2





          $begingroup$

          So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have



          $$ AT^2+BT^2=K$$



          Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
          $$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$



          $$ = 2(T-M)^2+(A-B)^2/2$$



          So $$ (T-M)^2= K-(A-B)^2/4$$



          and thus $4K geq (A-B)^2$ or c) on your answer sheet.






          share|cite|improve this answer











          $endgroup$



          So if point $T$ is for $z$ and $A,B$ for $z_1,z_2$ then we have



          $$ AT^2+BT^2=K$$



          Let $M = (A+B)/2$ be a midpoint for $AB$ then we have:
          $$ K= (T-A)^2+(T-B)^2$$ $$ = 2T^2-2T(A+B)+A^2+B^2 $$ $$ = 2T^2-4Tcdot M + 2M^2- 2M^2+A^2+B^2$$



          $$ = 2(T-M)^2+(A-B)^2/2$$



          So $$ (T-M)^2= K-(A-B)^2/4$$



          and thus $4K geq (A-B)^2$ or c) on your answer sheet.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 17 at 19:36

























          answered Jan 17 at 11:23









          greedoidgreedoid

          42k1152105




          42k1152105








          • 1




            $begingroup$
            Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
            $endgroup$
            – ss1729
            Jan 17 at 19:40












          • $begingroup$
            You just have to know position vectors.
            $endgroup$
            – greedoid
            Jan 17 at 19:43










          • $begingroup$
            How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
            $endgroup$
            – ss1729
            Jan 17 at 20:15










          • $begingroup$
            Do you know vectors?
            $endgroup$
            – greedoid
            Jan 17 at 21:08










          • $begingroup$
            If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
            $endgroup$
            – greedoid
            Jan 17 at 21:14














          • 1




            $begingroup$
            Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
            $endgroup$
            – ss1729
            Jan 17 at 19:40












          • $begingroup$
            You just have to know position vectors.
            $endgroup$
            – greedoid
            Jan 17 at 19:43










          • $begingroup$
            How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
            $endgroup$
            – ss1729
            Jan 17 at 20:15










          • $begingroup$
            Do you know vectors?
            $endgroup$
            – greedoid
            Jan 17 at 21:08










          • $begingroup$
            If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
            $endgroup$
            – greedoid
            Jan 17 at 21:14








          1




          1




          $begingroup$
          Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
          $endgroup$
          – ss1729
          Jan 17 at 19:40






          $begingroup$
          Thanx and I just tried to modify OP to better explain my doubt. btw still trying to understand ur proof.
          $endgroup$
          – ss1729
          Jan 17 at 19:40














          $begingroup$
          You just have to know position vectors.
          $endgroup$
          – greedoid
          Jan 17 at 19:43




          $begingroup$
          You just have to know position vectors.
          $endgroup$
          – greedoid
          Jan 17 at 19:43












          $begingroup$
          How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
          $endgroup$
          – ss1729
          Jan 17 at 20:15




          $begingroup$
          How do u write $(T−A)^2$ for $|z−z1|^2$ ?. are u considering for the case where it is real ?. ould u pls explain a bit more.
          $endgroup$
          – ss1729
          Jan 17 at 20:15












          $begingroup$
          Do you know vectors?
          $endgroup$
          – greedoid
          Jan 17 at 21:08




          $begingroup$
          Do you know vectors?
          $endgroup$
          – greedoid
          Jan 17 at 21:08












          $begingroup$
          If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
          $endgroup$
          – greedoid
          Jan 17 at 21:14




          $begingroup$
          If $T$ is a point with coordinates $(x,y)$ then with same notation $T$ is vector from $(0,0)$ to $(x,y)$. So we have $vec {T} = (x,y) =T$
          $endgroup$
          – greedoid
          Jan 17 at 21:14


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076855%2fcondition-for-which-z-z-12z-z-22-k-in-mathbbr-represent-a-circle%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?