If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$, then find $alpha$, $beta$ in $(0,fracpi2)$
$begingroup$
If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$,
where $displaystyle alpha, beta in bigg(0,frac{pi}{2}bigg)$. Then value of $alpha,beta$ are
Try: I am trying to convert it into sum of square of quantity
like $$(cos^2 alpha)^2+(2sin^2 beta)^2-2cdot cos^2 alpha cdot 2sin^2 beta-4sqrt{2}cos alpha sin beta +2+4cos^2 alpha cdot sin^2 beta$$
$$(cos^2 alpha--2sin^2 beta)^2-4sqrt{2}cos alpha sin beta+4cos^2 alpha cdot sin^2 beta$$
Now i did not know how to solve it, could some help me
trigonometry
$endgroup$
add a comment |
$begingroup$
If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$,
where $displaystyle alpha, beta in bigg(0,frac{pi}{2}bigg)$. Then value of $alpha,beta$ are
Try: I am trying to convert it into sum of square of quantity
like $$(cos^2 alpha)^2+(2sin^2 beta)^2-2cdot cos^2 alpha cdot 2sin^2 beta-4sqrt{2}cos alpha sin beta +2+4cos^2 alpha cdot sin^2 beta$$
$$(cos^2 alpha--2sin^2 beta)^2-4sqrt{2}cos alpha sin beta+4cos^2 alpha cdot sin^2 beta$$
Now i did not know how to solve it, could some help me
trigonometry
$endgroup$
$begingroup$
$cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
$endgroup$
– DXT
Jan 24 at 12:49
add a comment |
$begingroup$
If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$,
where $displaystyle alpha, beta in bigg(0,frac{pi}{2}bigg)$. Then value of $alpha,beta$ are
Try: I am trying to convert it into sum of square of quantity
like $$(cos^2 alpha)^2+(2sin^2 beta)^2-2cdot cos^2 alpha cdot 2sin^2 beta-4sqrt{2}cos alpha sin beta +2+4cos^2 alpha cdot sin^2 beta$$
$$(cos^2 alpha--2sin^2 beta)^2-4sqrt{2}cos alpha sin beta+4cos^2 alpha cdot sin^2 beta$$
Now i did not know how to solve it, could some help me
trigonometry
$endgroup$
If $cos^4 alpha+4sin^4 beta-4sqrt{2}cos alpha sin beta +2=0$,
where $displaystyle alpha, beta in bigg(0,frac{pi}{2}bigg)$. Then value of $alpha,beta$ are
Try: I am trying to convert it into sum of square of quantity
like $$(cos^2 alpha)^2+(2sin^2 beta)^2-2cdot cos^2 alpha cdot 2sin^2 beta-4sqrt{2}cos alpha sin beta +2+4cos^2 alpha cdot sin^2 beta$$
$$(cos^2 alpha--2sin^2 beta)^2-4sqrt{2}cos alpha sin beta+4cos^2 alpha cdot sin^2 beta$$
Now i did not know how to solve it, could some help me
trigonometry
trigonometry
edited Jan 17 at 10:47
Blue
48.4k870154
48.4k870154
asked Jan 17 at 10:01
DXTDXT
5,6892630
5,6892630
$begingroup$
$cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
$endgroup$
– DXT
Jan 24 at 12:49
add a comment |
$begingroup$
$cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
$endgroup$
– DXT
Jan 24 at 12:49
$begingroup$
$cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
$endgroup$
– DXT
Jan 24 at 12:49
$begingroup$
$cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
$endgroup$
– DXT
Jan 24 at 12:49
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
For real $cos^2alpha,sin^2beta$
$$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$
The equality will occur if $cos^4alpha=4sin^4beta=1$
$endgroup$
1
$begingroup$
See artofproblemsolving.com/wiki/index.php/…
$endgroup$
– lab bhattacharjee
Jan 17 at 11:01
add a comment |
$begingroup$
If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076798%2fif-cos4-alpha4-sin4-beta-4-sqrt2-cos-alpha-sin-beta-2-0-then-find%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
For real $cos^2alpha,sin^2beta$
$$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$
The equality will occur if $cos^4alpha=4sin^4beta=1$
$endgroup$
1
$begingroup$
See artofproblemsolving.com/wiki/index.php/…
$endgroup$
– lab bhattacharjee
Jan 17 at 11:01
add a comment |
$begingroup$
Hint:
For real $cos^2alpha,sin^2beta$
$$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$
The equality will occur if $cos^4alpha=4sin^4beta=1$
$endgroup$
1
$begingroup$
See artofproblemsolving.com/wiki/index.php/…
$endgroup$
– lab bhattacharjee
Jan 17 at 11:01
add a comment |
$begingroup$
Hint:
For real $cos^2alpha,sin^2beta$
$$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$
The equality will occur if $cos^4alpha=4sin^4beta=1$
$endgroup$
Hint:
For real $cos^2alpha,sin^2beta$
$$dfrac{cos^4alpha+4sin^4beta+1+1}4gesqrt[4]{cos^4alphacdot4sin^4beta}$$
The equality will occur if $cos^4alpha=4sin^4beta=1$
answered Jan 17 at 10:33
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
1
$begingroup$
See artofproblemsolving.com/wiki/index.php/…
$endgroup$
– lab bhattacharjee
Jan 17 at 11:01
add a comment |
1
$begingroup$
See artofproblemsolving.com/wiki/index.php/…
$endgroup$
– lab bhattacharjee
Jan 17 at 11:01
1
1
$begingroup$
See artofproblemsolving.com/wiki/index.php/…
$endgroup$
– lab bhattacharjee
Jan 17 at 11:01
$begingroup$
See artofproblemsolving.com/wiki/index.php/…
$endgroup$
– lab bhattacharjee
Jan 17 at 11:01
add a comment |
$begingroup$
If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.
$endgroup$
add a comment |
$begingroup$
If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.
$endgroup$
add a comment |
$begingroup$
If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.
$endgroup$
If you just call $x=cos(alpha)$ and $y=sin(beta)$ you get the 4th degree polynomial equation $x^4-4sqrt{2}xy + y^4 +2 =0$. I don't see a clever way to solve this directly but this can be solved algebraically. So I would put this equation into mathematica or some similar software and then look a the 4 solutions.
answered Jan 17 at 10:29
quaraguequarague
353110
353110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076798%2fif-cos4-alpha4-sin4-beta-4-sqrt2-cos-alpha-sin-beta-2-0-then-find%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$cos^4 alpha+4sin^4alpha-4sqrt{2}cos alpha cdot sin alpha +2=0 implies (cos^2 alpha-2sin^2alpha)^2+4cos^2alpha sin^2 alpha-4sqrt{2}cos alpha sin alpha+2=0implies (cos^2alpha-2sin^2alpha)^2+2(sqrt{2}acos alpha sin alpha-1)^2=0$
$endgroup$
– DXT
Jan 24 at 12:49