How to solve $lim left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2}$
$begingroup$
I can't seem to find a way to solve:
$$lim left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}$$
I've tried applying an exponential and logaritmic to take the $n^2$ out of the exponent, I've tried dividing the expression, but I don't get anywhere that brings light to the solution.
Any ideas?
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
I can't seem to find a way to solve:
$$lim left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}$$
I've tried applying an exponential and logaritmic to take the $n^2$ out of the exponent, I've tried dividing the expression, but I don't get anywhere that brings light to the solution.
Any ideas?
sequences-and-series limits
$endgroup$
$begingroup$
Hint: put $n=1/t$ where $t>0$ is small.
$endgroup$
– user1892304
Jan 25 at 11:56
$begingroup$
Nodfrac
in titles please.
$endgroup$
– Did
Jan 25 at 12:32
$begingroup$
limits at which point? you didn't mention the point.... :(
$endgroup$
– Abhas Kumar Sinha
Jan 25 at 15:25
$begingroup$
@AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
$endgroup$
– Concept7
Jan 25 at 17:32
add a comment |
$begingroup$
I can't seem to find a way to solve:
$$lim left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}$$
I've tried applying an exponential and logaritmic to take the $n^2$ out of the exponent, I've tried dividing the expression, but I don't get anywhere that brings light to the solution.
Any ideas?
sequences-and-series limits
$endgroup$
I can't seem to find a way to solve:
$$lim left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}$$
I've tried applying an exponential and logaritmic to take the $n^2$ out of the exponent, I've tried dividing the expression, but I don't get anywhere that brings light to the solution.
Any ideas?
sequences-and-series limits
sequences-and-series limits
edited Jan 25 at 12:32
Did
248k23225463
248k23225463
asked Jan 25 at 11:53
Concept7Concept7
1468
1468
$begingroup$
Hint: put $n=1/t$ where $t>0$ is small.
$endgroup$
– user1892304
Jan 25 at 11:56
$begingroup$
Nodfrac
in titles please.
$endgroup$
– Did
Jan 25 at 12:32
$begingroup$
limits at which point? you didn't mention the point.... :(
$endgroup$
– Abhas Kumar Sinha
Jan 25 at 15:25
$begingroup$
@AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
$endgroup$
– Concept7
Jan 25 at 17:32
add a comment |
$begingroup$
Hint: put $n=1/t$ where $t>0$ is small.
$endgroup$
– user1892304
Jan 25 at 11:56
$begingroup$
Nodfrac
in titles please.
$endgroup$
– Did
Jan 25 at 12:32
$begingroup$
limits at which point? you didn't mention the point.... :(
$endgroup$
– Abhas Kumar Sinha
Jan 25 at 15:25
$begingroup$
@AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
$endgroup$
– Concept7
Jan 25 at 17:32
$begingroup$
Hint: put $n=1/t$ where $t>0$ is small.
$endgroup$
– user1892304
Jan 25 at 11:56
$begingroup$
Hint: put $n=1/t$ where $t>0$ is small.
$endgroup$
– user1892304
Jan 25 at 11:56
$begingroup$
No
dfrac
in titles please.$endgroup$
– Did
Jan 25 at 12:32
$begingroup$
No
dfrac
in titles please.$endgroup$
– Did
Jan 25 at 12:32
$begingroup$
limits at which point? you didn't mention the point.... :(
$endgroup$
– Abhas Kumar Sinha
Jan 25 at 15:25
$begingroup$
limits at which point? you didn't mention the point.... :(
$endgroup$
– Abhas Kumar Sinha
Jan 25 at 15:25
$begingroup$
@AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
$endgroup$
– Concept7
Jan 25 at 17:32
$begingroup$
@AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
$endgroup$
– Concept7
Jan 25 at 17:32
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$
begin{align*}
L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
&= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
&= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
end{align*}
$$
Now consider:
$$
lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
$$
Hence your limit is:
$$
e^{-infty} = 0
$$
Description of steps:
$(1)$ add and subtract $2n^2$
$(2)$ perform division
$(3)$ multiply the power by the reciprocal of the fraction inside parentheses
$(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$
$endgroup$
$begingroup$
Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
$endgroup$
– P. Quinton
Jan 25 at 12:13
$begingroup$
@P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
$endgroup$
– roman
Jan 25 at 12:13
$begingroup$
I was actually talking about the step just before that, the fourth
$endgroup$
– P. Quinton
Jan 25 at 12:14
$begingroup$
@P.Quinton well that would be a good candidate for the OP to consider proving it
$endgroup$
– roman
Jan 25 at 12:24
add a comment |
$begingroup$
$$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$
$endgroup$
add a comment |
$begingroup$
I suppose that $nto infty$
$$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$
$endgroup$
add a comment |
$begingroup$
We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
frac{e}{lim_{ntoinfty}e^n}$$
Hence your limit is: 0
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087012%2fhow-to-solve-lim-left-fracn3n4n32n2-rightn2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
begin{align*}
L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
&= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
&= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
end{align*}
$$
Now consider:
$$
lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
$$
Hence your limit is:
$$
e^{-infty} = 0
$$
Description of steps:
$(1)$ add and subtract $2n^2$
$(2)$ perform division
$(3)$ multiply the power by the reciprocal of the fraction inside parentheses
$(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$
$endgroup$
$begingroup$
Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
$endgroup$
– P. Quinton
Jan 25 at 12:13
$begingroup$
@P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
$endgroup$
– roman
Jan 25 at 12:13
$begingroup$
I was actually talking about the step just before that, the fourth
$endgroup$
– P. Quinton
Jan 25 at 12:14
$begingroup$
@P.Quinton well that would be a good candidate for the OP to consider proving it
$endgroup$
– roman
Jan 25 at 12:24
add a comment |
$begingroup$
$$
begin{align*}
L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
&= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
&= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
end{align*}
$$
Now consider:
$$
lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
$$
Hence your limit is:
$$
e^{-infty} = 0
$$
Description of steps:
$(1)$ add and subtract $2n^2$
$(2)$ perform division
$(3)$ multiply the power by the reciprocal of the fraction inside parentheses
$(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$
$endgroup$
$begingroup$
Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
$endgroup$
– P. Quinton
Jan 25 at 12:13
$begingroup$
@P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
$endgroup$
– roman
Jan 25 at 12:13
$begingroup$
I was actually talking about the step just before that, the fourth
$endgroup$
– P. Quinton
Jan 25 at 12:14
$begingroup$
@P.Quinton well that would be a good candidate for the OP to consider proving it
$endgroup$
– roman
Jan 25 at 12:24
add a comment |
$begingroup$
$$
begin{align*}
L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
&= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
&= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
end{align*}
$$
Now consider:
$$
lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
$$
Hence your limit is:
$$
e^{-infty} = 0
$$
Description of steps:
$(1)$ add and subtract $2n^2$
$(2)$ perform division
$(3)$ multiply the power by the reciprocal of the fraction inside parentheses
$(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$
$endgroup$
$$
begin{align*}
L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
&= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
&= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
end{align*}
$$
Now consider:
$$
lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
$$
Hence your limit is:
$$
e^{-infty} = 0
$$
Description of steps:
$(1)$ add and subtract $2n^2$
$(2)$ perform division
$(3)$ multiply the power by the reciprocal of the fraction inside parentheses
$(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$
edited Jan 25 at 12:11
answered Jan 25 at 12:07
romanroman
2,34321224
2,34321224
$begingroup$
Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
$endgroup$
– P. Quinton
Jan 25 at 12:13
$begingroup$
@P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
$endgroup$
– roman
Jan 25 at 12:13
$begingroup$
I was actually talking about the step just before that, the fourth
$endgroup$
– P. Quinton
Jan 25 at 12:14
$begingroup$
@P.Quinton well that would be a good candidate for the OP to consider proving it
$endgroup$
– roman
Jan 25 at 12:24
add a comment |
$begingroup$
Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
$endgroup$
– P. Quinton
Jan 25 at 12:13
$begingroup$
@P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
$endgroup$
– roman
Jan 25 at 12:13
$begingroup$
I was actually talking about the step just before that, the fourth
$endgroup$
– P. Quinton
Jan 25 at 12:14
$begingroup$
@P.Quinton well that would be a good candidate for the OP to consider proving it
$endgroup$
– roman
Jan 25 at 12:24
$begingroup$
Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
$endgroup$
– P. Quinton
Jan 25 at 12:13
$begingroup$
Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
$endgroup$
– P. Quinton
Jan 25 at 12:13
$begingroup$
@P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
$endgroup$
– roman
Jan 25 at 12:13
$begingroup$
@P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
$endgroup$
– roman
Jan 25 at 12:13
$begingroup$
I was actually talking about the step just before that, the fourth
$endgroup$
– P. Quinton
Jan 25 at 12:14
$begingroup$
I was actually talking about the step just before that, the fourth
$endgroup$
– P. Quinton
Jan 25 at 12:14
$begingroup$
@P.Quinton well that would be a good candidate for the OP to consider proving it
$endgroup$
– roman
Jan 25 at 12:24
$begingroup$
@P.Quinton well that would be a good candidate for the OP to consider proving it
$endgroup$
– roman
Jan 25 at 12:24
add a comment |
$begingroup$
$$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$
$endgroup$
add a comment |
$begingroup$
$$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$
$endgroup$
add a comment |
$begingroup$
$$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$
$endgroup$
$$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$
answered Jan 25 at 12:05
Ahmad BazziAhmad Bazzi
8,3622824
8,3622824
add a comment |
add a comment |
$begingroup$
I suppose that $nto infty$
$$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$
$endgroup$
add a comment |
$begingroup$
I suppose that $nto infty$
$$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$
$endgroup$
add a comment |
$begingroup$
I suppose that $nto infty$
$$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$
$endgroup$
I suppose that $nto infty$
$$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$
answered Jan 25 at 12:13
J.DaneJ.Dane
368114
368114
add a comment |
add a comment |
$begingroup$
We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
frac{e}{lim_{ntoinfty}e^n}$$
Hence your limit is: 0
$endgroup$
add a comment |
$begingroup$
We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
frac{e}{lim_{ntoinfty}e^n}$$
Hence your limit is: 0
$endgroup$
add a comment |
$begingroup$
We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
frac{e}{lim_{ntoinfty}e^n}$$
Hence your limit is: 0
$endgroup$
We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
frac{e}{lim_{ntoinfty}e^n}$$
Hence your limit is: 0
answered Jan 25 at 12:21
user62498user62498
1,978614
1,978614
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087012%2fhow-to-solve-lim-left-fracn3n4n32n2-rightn2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: put $n=1/t$ where $t>0$ is small.
$endgroup$
– user1892304
Jan 25 at 11:56
$begingroup$
No
dfrac
in titles please.$endgroup$
– Did
Jan 25 at 12:32
$begingroup$
limits at which point? you didn't mention the point.... :(
$endgroup$
– Abhas Kumar Sinha
Jan 25 at 15:25
$begingroup$
@AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
$endgroup$
– Concept7
Jan 25 at 17:32