How to solve $lim left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2}$












2












$begingroup$


I can't seem to find a way to solve:



$$lim left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}$$



I've tried applying an exponential and logaritmic to take the $n^2$ out of the exponent, I've tried dividing the expression, but I don't get anywhere that brings light to the solution.



Any ideas?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: put $n=1/t$ where $t>0$ is small.
    $endgroup$
    – user1892304
    Jan 25 at 11:56










  • $begingroup$
    No dfrac in titles please.
    $endgroup$
    – Did
    Jan 25 at 12:32










  • $begingroup$
    limits at which point? you didn't mention the point.... :(
    $endgroup$
    – Abhas Kumar Sinha
    Jan 25 at 15:25










  • $begingroup$
    @AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
    $endgroup$
    – Concept7
    Jan 25 at 17:32
















2












$begingroup$


I can't seem to find a way to solve:



$$lim left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}$$



I've tried applying an exponential and logaritmic to take the $n^2$ out of the exponent, I've tried dividing the expression, but I don't get anywhere that brings light to the solution.



Any ideas?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: put $n=1/t$ where $t>0$ is small.
    $endgroup$
    – user1892304
    Jan 25 at 11:56










  • $begingroup$
    No dfrac in titles please.
    $endgroup$
    – Did
    Jan 25 at 12:32










  • $begingroup$
    limits at which point? you didn't mention the point.... :(
    $endgroup$
    – Abhas Kumar Sinha
    Jan 25 at 15:25










  • $begingroup$
    @AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
    $endgroup$
    – Concept7
    Jan 25 at 17:32














2












2








2





$begingroup$


I can't seem to find a way to solve:



$$lim left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}$$



I've tried applying an exponential and logaritmic to take the $n^2$ out of the exponent, I've tried dividing the expression, but I don't get anywhere that brings light to the solution.



Any ideas?










share|cite|improve this question











$endgroup$




I can't seem to find a way to solve:



$$lim left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}$$



I've tried applying an exponential and logaritmic to take the $n^2$ out of the exponent, I've tried dividing the expression, but I don't get anywhere that brings light to the solution.



Any ideas?







sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 12:32









Did

248k23225463




248k23225463










asked Jan 25 at 11:53









Concept7Concept7

1468




1468












  • $begingroup$
    Hint: put $n=1/t$ where $t>0$ is small.
    $endgroup$
    – user1892304
    Jan 25 at 11:56










  • $begingroup$
    No dfrac in titles please.
    $endgroup$
    – Did
    Jan 25 at 12:32










  • $begingroup$
    limits at which point? you didn't mention the point.... :(
    $endgroup$
    – Abhas Kumar Sinha
    Jan 25 at 15:25










  • $begingroup$
    @AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
    $endgroup$
    – Concept7
    Jan 25 at 17:32


















  • $begingroup$
    Hint: put $n=1/t$ where $t>0$ is small.
    $endgroup$
    – user1892304
    Jan 25 at 11:56










  • $begingroup$
    No dfrac in titles please.
    $endgroup$
    – Did
    Jan 25 at 12:32










  • $begingroup$
    limits at which point? you didn't mention the point.... :(
    $endgroup$
    – Abhas Kumar Sinha
    Jan 25 at 15:25










  • $begingroup$
    @AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
    $endgroup$
    – Concept7
    Jan 25 at 17:32
















$begingroup$
Hint: put $n=1/t$ where $t>0$ is small.
$endgroup$
– user1892304
Jan 25 at 11:56




$begingroup$
Hint: put $n=1/t$ where $t>0$ is small.
$endgroup$
– user1892304
Jan 25 at 11:56












$begingroup$
No dfrac in titles please.
$endgroup$
– Did
Jan 25 at 12:32




$begingroup$
No dfrac in titles please.
$endgroup$
– Did
Jan 25 at 12:32












$begingroup$
limits at which point? you didn't mention the point.... :(
$endgroup$
– Abhas Kumar Sinha
Jan 25 at 15:25




$begingroup$
limits at which point? you didn't mention the point.... :(
$endgroup$
– Abhas Kumar Sinha
Jan 25 at 15:25












$begingroup$
@AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
$endgroup$
– Concept7
Jan 25 at 17:32




$begingroup$
@AbhasKumarSinha, when using $n$ we usually assume $n to infty$ so I omitted that part.
$endgroup$
– Concept7
Jan 25 at 17:32










4 Answers
4






active

oldest

votes


















1












$begingroup$

$$
begin{align*}
L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
&= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
&= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
&= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
end{align*}
$$

Now consider:
$$
lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
$$



Hence your limit is:
$$
e^{-infty} = 0
$$



Description of steps:





  • $(1)$ add and subtract $2n^2$


  • $(2)$ perform division


  • $(3)$ multiply the power by the reciprocal of the fraction inside parentheses


  • $(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
    $endgroup$
    – P. Quinton
    Jan 25 at 12:13












  • $begingroup$
    @P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
    $endgroup$
    – roman
    Jan 25 at 12:13












  • $begingroup$
    I was actually talking about the step just before that, the fourth
    $endgroup$
    – P. Quinton
    Jan 25 at 12:14










  • $begingroup$
    @P.Quinton well that would be a good candidate for the OP to consider proving it
    $endgroup$
    – roman
    Jan 25 at 12:24



















1












$begingroup$

$$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    I suppose that $nto infty$



    $$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
      lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
      frac{e}{lim_{ntoinfty}e^n}$$



      Hence your limit is: 0






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087012%2fhow-to-solve-lim-left-fracn3n4n32n2-rightn2%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        $$
        begin{align*}
        L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
        &= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
        &= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
        &= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
        &= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
        end{align*}
        $$

        Now consider:
        $$
        lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
        $$



        Hence your limit is:
        $$
        e^{-infty} = 0
        $$



        Description of steps:





        • $(1)$ add and subtract $2n^2$


        • $(2)$ perform division


        • $(3)$ multiply the power by the reciprocal of the fraction inside parentheses


        • $(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
          $endgroup$
          – P. Quinton
          Jan 25 at 12:13












        • $begingroup$
          @P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
          $endgroup$
          – roman
          Jan 25 at 12:13












        • $begingroup$
          I was actually talking about the step just before that, the fourth
          $endgroup$
          – P. Quinton
          Jan 25 at 12:14










        • $begingroup$
          @P.Quinton well that would be a good candidate for the OP to consider proving it
          $endgroup$
          – roman
          Jan 25 at 12:24
















        1












        $begingroup$

        $$
        begin{align*}
        L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
        &= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
        &= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
        &= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
        &= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
        end{align*}
        $$

        Now consider:
        $$
        lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
        $$



        Hence your limit is:
        $$
        e^{-infty} = 0
        $$



        Description of steps:





        • $(1)$ add and subtract $2n^2$


        • $(2)$ perform division


        • $(3)$ multiply the power by the reciprocal of the fraction inside parentheses


        • $(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
          $endgroup$
          – P. Quinton
          Jan 25 at 12:13












        • $begingroup$
          @P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
          $endgroup$
          – roman
          Jan 25 at 12:13












        • $begingroup$
          I was actually talking about the step just before that, the fourth
          $endgroup$
          – P. Quinton
          Jan 25 at 12:14










        • $begingroup$
          @P.Quinton well that would be a good candidate for the OP to consider proving it
          $endgroup$
          – roman
          Jan 25 at 12:24














        1












        1








        1





        $begingroup$

        $$
        begin{align*}
        L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
        &= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
        &= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
        &= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
        &= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
        end{align*}
        $$

        Now consider:
        $$
        lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
        $$



        Hence your limit is:
        $$
        e^{-infty} = 0
        $$



        Description of steps:





        • $(1)$ add and subtract $2n^2$


        • $(2)$ perform division


        • $(3)$ multiply the power by the reciprocal of the fraction inside parentheses


        • $(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$






        share|cite|improve this answer











        $endgroup$



        $$
        begin{align*}
        L &= lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} \
        &= lim_{ntoinfty}left(frac{n^3 +2n^2 - 2n^2+n+4}{n^3+2n^2}right)^{n^2}tag1 \
        &= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{n^2} tag2 \
        &= lim_{ntoinfty}left(1 + frac{- 2n^2+n+4}{n^3+2n^2}right)^{frac{n^2(n^3+2n^2)(n-2n^2+4)}{(n^3+2n^2)(n-2n^2+4)}} tag3 \
        &= lim_{ntoinfty}e^{n^2(n-2n^2+4)over(n^3+2n^2)} tag4
        end{align*}
        $$

        Now consider:
        $$
        lim_{ntoinfty}{n^2(n-2n^2+4)over(n^3+2n^2)} = -infty
        $$



        Hence your limit is:
        $$
        e^{-infty} = 0
        $$



        Description of steps:





        • $(1)$ add and subtract $2n^2$


        • $(2)$ perform division


        • $(3)$ multiply the power by the reciprocal of the fraction inside parentheses


        • $(4)$ use the limit for $(1 + {1over x^n})^{x_n}$ when $x_n to infty$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 25 at 12:11

























        answered Jan 25 at 12:07









        romanroman

        2,34321224




        2,34321224












        • $begingroup$
          Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
          $endgroup$
          – P. Quinton
          Jan 25 at 12:13












        • $begingroup$
          @P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
          $endgroup$
          – roman
          Jan 25 at 12:13












        • $begingroup$
          I was actually talking about the step just before that, the fourth
          $endgroup$
          – P. Quinton
          Jan 25 at 12:14










        • $begingroup$
          @P.Quinton well that would be a good candidate for the OP to consider proving it
          $endgroup$
          – roman
          Jan 25 at 12:24


















        • $begingroup$
          Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
          $endgroup$
          – P. Quinton
          Jan 25 at 12:13












        • $begingroup$
          @P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
          $endgroup$
          – roman
          Jan 25 at 12:13












        • $begingroup$
          I was actually talking about the step just before that, the fourth
          $endgroup$
          – P. Quinton
          Jan 25 at 12:14










        • $begingroup$
          @P.Quinton well that would be a good candidate for the OP to consider proving it
          $endgroup$
          – roman
          Jan 25 at 12:24
















        $begingroup$
        Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
        $endgroup$
        – P. Quinton
        Jan 25 at 12:13






        $begingroup$
        Some extra work need to be taken care of in step 4, the limit is $(1+frac{1}{x^n})^{x_n y_n}to e^{y_n}$ when $x_nto infty$, this is not trivial and I'm not sure it is always true.
        $endgroup$
        – P. Quinton
        Jan 25 at 12:13














        $begingroup$
        @P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
        $endgroup$
        – roman
        Jan 25 at 12:13






        $begingroup$
        @P.Quinton you may justify this by continuity of $a^x$. Hence $lim a^{x_n} = a^{lim x_n}$
        $endgroup$
        – roman
        Jan 25 at 12:13














        $begingroup$
        I was actually talking about the step just before that, the fourth
        $endgroup$
        – P. Quinton
        Jan 25 at 12:14




        $begingroup$
        I was actually talking about the step just before that, the fourth
        $endgroup$
        – P. Quinton
        Jan 25 at 12:14












        $begingroup$
        @P.Quinton well that would be a good candidate for the OP to consider proving it
        $endgroup$
        – roman
        Jan 25 at 12:24




        $begingroup$
        @P.Quinton well that would be a good candidate for the OP to consider proving it
        $endgroup$
        – roman
        Jan 25 at 12:24











        1












        $begingroup$

        $$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
        Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          $$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
          Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            $$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
            Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$






            share|cite|improve this answer









            $endgroup$



            $$lim_{n rightarrow infty} log f(n) = n^2 logdfrac{n^3+n+4}{n^3+2n^2}= n^2 log (1 - O(frac{1}{n})) rightarrow -infty $$
            Hence $$lim_{n rightarrow infty} f(n) = e^{-infty} = 0$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 25 at 12:05









            Ahmad BazziAhmad Bazzi

            8,3622824




            8,3622824























                1












                $begingroup$

                I suppose that $nto infty$



                $$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  I suppose that $nto infty$



                  $$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    I suppose that $nto infty$



                    $$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$






                    share|cite|improve this answer









                    $endgroup$



                    I suppose that $nto infty$



                    $$lim_{nto infty} left(dfrac{n^3+n+4}{n^3+2n^2}right)^{n^2}=lim_{nto infty} Biggl(left(1+dfrac{-2n^2+n+4}{n^3+2n^2}right)^{dfrac{n^3+2n^2}{-2n^2+n+4}}Biggr)^{frac{-2n^4+n^3+4n^2}{n^3+2n^2}}= e^{-infty}=0$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 25 at 12:13









                    J.DaneJ.Dane

                    368114




                    368114























                        1












                        $begingroup$

                        We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
                        lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
                        frac{e}{lim_{ntoinfty}e^n}$$



                        Hence your limit is: 0






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
                          lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
                          frac{e}{lim_{ntoinfty}e^n}$$



                          Hence your limit is: 0






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
                            lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
                            frac{e}{lim_{ntoinfty}e^n}$$



                            Hence your limit is: 0






                            share|cite|improve this answer









                            $endgroup$



                            We have $$ lim_{ntoinfty}left(frac{n^3+n+4}{n^3+2n^2}right)^{n^2} =
                            lim_{ntoinfty}left(frac{1+frac{n+4}{n^3} }{1+frac{2n^2}{n^3}}right)^{n^2}=
                            frac{e}{lim_{ntoinfty}e^n}$$



                            Hence your limit is: 0







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 25 at 12:21









                            user62498user62498

                            1,978614




                            1,978614






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087012%2fhow-to-solve-lim-left-fracn3n4n32n2-rightn2%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Mario Kart Wii

                                The Binding of Isaac: Rebirth/Afterbirth

                                What does “Dominus providebit” mean?