Determine the recurrence formula
$begingroup$
$int_{-1}^{1}(1-x^2)^ndx$
I have trouble with finding recurrence formula for this integral. $n$ is natural parameter. I've tried to split up $(1-x^2)^n = (1+x)^n(1-x)^n$ and then to integrate partially, but it only makes things more complicate.
Maybe substitution $x=sint$ can lead to solution?
When I apply it I get:
$int_{-pi/2}^{pi/2}(cost)^{n+1}dt$
What to do next then?
integration definite-integrals recurrence-relations reduction-formula
$endgroup$
add a comment |
$begingroup$
$int_{-1}^{1}(1-x^2)^ndx$
I have trouble with finding recurrence formula for this integral. $n$ is natural parameter. I've tried to split up $(1-x^2)^n = (1+x)^n(1-x)^n$ and then to integrate partially, but it only makes things more complicate.
Maybe substitution $x=sint$ can lead to solution?
When I apply it I get:
$int_{-pi/2}^{pi/2}(cost)^{n+1}dt$
What to do next then?
integration definite-integrals recurrence-relations reduction-formula
$endgroup$
$begingroup$
how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
$endgroup$
– Sujit Bhattacharyya
Jan 25 at 11:48
add a comment |
$begingroup$
$int_{-1}^{1}(1-x^2)^ndx$
I have trouble with finding recurrence formula for this integral. $n$ is natural parameter. I've tried to split up $(1-x^2)^n = (1+x)^n(1-x)^n$ and then to integrate partially, but it only makes things more complicate.
Maybe substitution $x=sint$ can lead to solution?
When I apply it I get:
$int_{-pi/2}^{pi/2}(cost)^{n+1}dt$
What to do next then?
integration definite-integrals recurrence-relations reduction-formula
$endgroup$
$int_{-1}^{1}(1-x^2)^ndx$
I have trouble with finding recurrence formula for this integral. $n$ is natural parameter. I've tried to split up $(1-x^2)^n = (1+x)^n(1-x)^n$ and then to integrate partially, but it only makes things more complicate.
Maybe substitution $x=sint$ can lead to solution?
When I apply it I get:
$int_{-pi/2}^{pi/2}(cost)^{n+1}dt$
What to do next then?
integration definite-integrals recurrence-relations reduction-formula
integration definite-integrals recurrence-relations reduction-formula
edited Jan 25 at 16:58
clathratus
4,8901338
4,8901338
asked Jan 25 at 11:34
Nikola MijuškovićNikola Mijušković
274
274
$begingroup$
how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
$endgroup$
– Sujit Bhattacharyya
Jan 25 at 11:48
add a comment |
$begingroup$
how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
$endgroup$
– Sujit Bhattacharyya
Jan 25 at 11:48
$begingroup$
how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
$endgroup$
– Sujit Bhattacharyya
Jan 25 at 11:48
$begingroup$
how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
$endgroup$
– Sujit Bhattacharyya
Jan 25 at 11:48
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You can integrate by parts directly to obtain
begin{align}
int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
&= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
end{align}
for $n in mathbb{N}$, which is the recurrence relation you are after.
$endgroup$
add a comment |
$begingroup$
Not a recurrence, but it seems that
$$
I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
$$
where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.
Also,
$$
frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
$$
WA gives
$$
I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
= frac{2^{n+1} n!}{(2n+1)!!}
$$
$endgroup$
add a comment |
$begingroup$
On the path of Nikola Mijušković...
begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}
Perform the change of variable $x=sin t$,
begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
&=2W_{2n+1}
end{align}
$W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )
It is known that, for $ngeq 0$,
begin{align}W_1&=1\
W_{n+2}&=frac{n+1}{n+2}W_nend{align}
Therefore,
begin{align}I_{n+1}&=2W_{2n+3}\
&=frac{2(2n+2)}{2n+3}W_{2n+1}\
&=frac{2(n+1)}{2n+3}I_{n}
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086997%2fdetermine-the-recurrence-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can integrate by parts directly to obtain
begin{align}
int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
&= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
end{align}
for $n in mathbb{N}$, which is the recurrence relation you are after.
$endgroup$
add a comment |
$begingroup$
You can integrate by parts directly to obtain
begin{align}
int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
&= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
end{align}
for $n in mathbb{N}$, which is the recurrence relation you are after.
$endgroup$
add a comment |
$begingroup$
You can integrate by parts directly to obtain
begin{align}
int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
&= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
end{align}
for $n in mathbb{N}$, which is the recurrence relation you are after.
$endgroup$
You can integrate by parts directly to obtain
begin{align}
int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
&= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
end{align}
for $n in mathbb{N}$, which is the recurrence relation you are after.
answered Jan 25 at 12:06
ComplexYetTrivialComplexYetTrivial
4,8232631
4,8232631
add a comment |
add a comment |
$begingroup$
Not a recurrence, but it seems that
$$
I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
$$
where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.
Also,
$$
frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
$$
WA gives
$$
I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
= frac{2^{n+1} n!}{(2n+1)!!}
$$
$endgroup$
add a comment |
$begingroup$
Not a recurrence, but it seems that
$$
I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
$$
where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.
Also,
$$
frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
$$
WA gives
$$
I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
= frac{2^{n+1} n!}{(2n+1)!!}
$$
$endgroup$
add a comment |
$begingroup$
Not a recurrence, but it seems that
$$
I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
$$
where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.
Also,
$$
frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
$$
WA gives
$$
I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
= frac{2^{n+1} n!}{(2n+1)!!}
$$
$endgroup$
Not a recurrence, but it seems that
$$
I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
$$
where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.
Also,
$$
frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
$$
WA gives
$$
I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
= frac{2^{n+1} n!}{(2n+1)!!}
$$
edited Jan 25 at 12:14
answered Jan 25 at 11:51
lhflhf
166k10171398
166k10171398
add a comment |
add a comment |
$begingroup$
On the path of Nikola Mijušković...
begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}
Perform the change of variable $x=sin t$,
begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
&=2W_{2n+1}
end{align}
$W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )
It is known that, for $ngeq 0$,
begin{align}W_1&=1\
W_{n+2}&=frac{n+1}{n+2}W_nend{align}
Therefore,
begin{align}I_{n+1}&=2W_{2n+3}\
&=frac{2(2n+2)}{2n+3}W_{2n+1}\
&=frac{2(n+1)}{2n+3}I_{n}
end{align}
$endgroup$
add a comment |
$begingroup$
On the path of Nikola Mijušković...
begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}
Perform the change of variable $x=sin t$,
begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
&=2W_{2n+1}
end{align}
$W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )
It is known that, for $ngeq 0$,
begin{align}W_1&=1\
W_{n+2}&=frac{n+1}{n+2}W_nend{align}
Therefore,
begin{align}I_{n+1}&=2W_{2n+3}\
&=frac{2(2n+2)}{2n+3}W_{2n+1}\
&=frac{2(n+1)}{2n+3}I_{n}
end{align}
$endgroup$
add a comment |
$begingroup$
On the path of Nikola Mijušković...
begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}
Perform the change of variable $x=sin t$,
begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
&=2W_{2n+1}
end{align}
$W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )
It is known that, for $ngeq 0$,
begin{align}W_1&=1\
W_{n+2}&=frac{n+1}{n+2}W_nend{align}
Therefore,
begin{align}I_{n+1}&=2W_{2n+3}\
&=frac{2(2n+2)}{2n+3}W_{2n+1}\
&=frac{2(n+1)}{2n+3}I_{n}
end{align}
$endgroup$
On the path of Nikola Mijušković...
begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}
Perform the change of variable $x=sin t$,
begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
&=2W_{2n+1}
end{align}
$W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )
It is known that, for $ngeq 0$,
begin{align}W_1&=1\
W_{n+2}&=frac{n+1}{n+2}W_nend{align}
Therefore,
begin{align}I_{n+1}&=2W_{2n+3}\
&=frac{2(2n+2)}{2n+3}W_{2n+1}\
&=frac{2(n+1)}{2n+3}I_{n}
end{align}
answered Jan 25 at 20:55
FDPFDP
6,06211829
6,06211829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086997%2fdetermine-the-recurrence-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
$endgroup$
– Sujit Bhattacharyya
Jan 25 at 11:48