Determine the recurrence formula












4












$begingroup$


$int_{-1}^{1}(1-x^2)^ndx$



I have trouble with finding recurrence formula for this integral. $n$ is natural parameter. I've tried to split up $(1-x^2)^n = (1+x)^n(1-x)^n$ and then to integrate partially, but it only makes things more complicate.



Maybe substitution $x=sint$ can lead to solution?
When I apply it I get:



$int_{-pi/2}^{pi/2}(cost)^{n+1}dt$



What to do next then?










share|cite|improve this question











$endgroup$












  • $begingroup$
    how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
    $endgroup$
    – Sujit Bhattacharyya
    Jan 25 at 11:48


















4












$begingroup$


$int_{-1}^{1}(1-x^2)^ndx$



I have trouble with finding recurrence formula for this integral. $n$ is natural parameter. I've tried to split up $(1-x^2)^n = (1+x)^n(1-x)^n$ and then to integrate partially, but it only makes things more complicate.



Maybe substitution $x=sint$ can lead to solution?
When I apply it I get:



$int_{-pi/2}^{pi/2}(cost)^{n+1}dt$



What to do next then?










share|cite|improve this question











$endgroup$












  • $begingroup$
    how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
    $endgroup$
    – Sujit Bhattacharyya
    Jan 25 at 11:48
















4












4








4


0



$begingroup$


$int_{-1}^{1}(1-x^2)^ndx$



I have trouble with finding recurrence formula for this integral. $n$ is natural parameter. I've tried to split up $(1-x^2)^n = (1+x)^n(1-x)^n$ and then to integrate partially, but it only makes things more complicate.



Maybe substitution $x=sint$ can lead to solution?
When I apply it I get:



$int_{-pi/2}^{pi/2}(cost)^{n+1}dt$



What to do next then?










share|cite|improve this question











$endgroup$




$int_{-1}^{1}(1-x^2)^ndx$



I have trouble with finding recurrence formula for this integral. $n$ is natural parameter. I've tried to split up $(1-x^2)^n = (1+x)^n(1-x)^n$ and then to integrate partially, but it only makes things more complicate.



Maybe substitution $x=sint$ can lead to solution?
When I apply it I get:



$int_{-pi/2}^{pi/2}(cost)^{n+1}dt$



What to do next then?







integration definite-integrals recurrence-relations reduction-formula






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 16:58









clathratus

4,8901338




4,8901338










asked Jan 25 at 11:34









Nikola MijuškovićNikola Mijušković

274




274












  • $begingroup$
    how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
    $endgroup$
    – Sujit Bhattacharyya
    Jan 25 at 11:48




















  • $begingroup$
    how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
    $endgroup$
    – Sujit Bhattacharyya
    Jan 25 at 11:48


















$begingroup$
how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
$endgroup$
– Sujit Bhattacharyya
Jan 25 at 11:48






$begingroup$
how about substituting $x=sin theta$? Your case is same as $n=-frac{1}{2}$ in : mathworld.wolfram.com/BetaFunction.html
$endgroup$
– Sujit Bhattacharyya
Jan 25 at 11:48












3 Answers
3






active

oldest

votes


















3












$begingroup$

You can integrate by parts directly to obtain
begin{align}
int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
&= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
end{align}

for $n in mathbb{N}$, which is the recurrence relation you are after.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Not a recurrence, but it seems that
    $$
    I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
    $$

    where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.



    Also,
    $$
    frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
    $$



    WA gives
    $$
    I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
    = frac{2^{n+1} n!}{(2n+1)!!}
    $$






    share|cite|improve this answer











    $endgroup$





















      1












      $begingroup$

      On the path of Nikola Mijušković...



      begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}



      Perform the change of variable $x=sin t$,



      begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
      &=2W_{2n+1}
      end{align}



      $W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )



      It is known that, for $ngeq 0$,



      begin{align}W_1&=1\
      W_{n+2}&=frac{n+1}{n+2}W_nend{align}



      Therefore,



      begin{align}I_{n+1}&=2W_{2n+3}\
      &=frac{2(2n+2)}{2n+3}W_{2n+1}\
      &=frac{2(n+1)}{2n+3}I_{n}
      end{align}






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086997%2fdetermine-the-recurrence-formula%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        You can integrate by parts directly to obtain
        begin{align}
        int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
        &= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
        end{align}

        for $n in mathbb{N}$, which is the recurrence relation you are after.






        share|cite|improve this answer









        $endgroup$


















          3












          $begingroup$

          You can integrate by parts directly to obtain
          begin{align}
          int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
          &= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
          end{align}

          for $n in mathbb{N}$, which is the recurrence relation you are after.






          share|cite|improve this answer









          $endgroup$
















            3












            3








            3





            $begingroup$

            You can integrate by parts directly to obtain
            begin{align}
            int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
            &= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
            end{align}

            for $n in mathbb{N}$, which is the recurrence relation you are after.






            share|cite|improve this answer









            $endgroup$



            You can integrate by parts directly to obtain
            begin{align}
            int limits_{-1}^1 (1-x^2)^n , mathrm{d} x &= left[x (1-x^2)^n right]_{x=-1}^{x=1} + 2n int limits_{-1}^1 x^2 (1-x^2)^{n-1} , mathrm{d} x \
            &= 2 n left[int limits_{-1}^1 (1-x^2)^{n-1} , mathrm{d} x - int limits_{-1}^1 (1-x^2)^n , mathrm{d} xright]
            end{align}

            for $n in mathbb{N}$, which is the recurrence relation you are after.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 25 at 12:06









            ComplexYetTrivialComplexYetTrivial

            4,8232631




            4,8232631























                1












                $begingroup$

                Not a recurrence, but it seems that
                $$
                I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
                $$

                where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.



                Also,
                $$
                frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
                $$



                WA gives
                $$
                I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
                = frac{2^{n+1} n!}{(2n+1)!!}
                $$






                share|cite|improve this answer











                $endgroup$


















                  1












                  $begingroup$

                  Not a recurrence, but it seems that
                  $$
                  I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
                  $$

                  where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.



                  Also,
                  $$
                  frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
                  $$



                  WA gives
                  $$
                  I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
                  = frac{2^{n+1} n!}{(2n+1)!!}
                  $$






                  share|cite|improve this answer











                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Not a recurrence, but it seems that
                    $$
                    I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
                    $$

                    where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.



                    Also,
                    $$
                    frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
                    $$



                    WA gives
                    $$
                    I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
                    = frac{2^{n+1} n!}{(2n+1)!!}
                    $$






                    share|cite|improve this answer











                    $endgroup$



                    Not a recurrence, but it seems that
                    $$
                    I_n = int_{-1}^{1}(1-x^2)^ndx = frac{2^{a_n}}{b_n}
                    $$

                    where $a_n$ is OEIS/A030303 and $b_n$ is OEIS/A001803.



                    Also,
                    $$
                    frac{1}{(1 - x)^{3/2}} = sum_{n=0}^{infty} frac{2}{I_n} x^n
                    $$



                    WA gives
                    $$
                    I_n = frac{sqrt{pi} Gamma(n + 1)}{Gamma(n +frac32)}
                    = frac{2^{n+1} n!}{(2n+1)!!}
                    $$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 25 at 12:14

























                    answered Jan 25 at 11:51









                    lhflhf

                    166k10171398




                    166k10171398























                        1












                        $begingroup$

                        On the path of Nikola Mijušković...



                        begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}



                        Perform the change of variable $x=sin t$,



                        begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
                        &=2W_{2n+1}
                        end{align}



                        $W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )



                        It is known that, for $ngeq 0$,



                        begin{align}W_1&=1\
                        W_{n+2}&=frac{n+1}{n+2}W_nend{align}



                        Therefore,



                        begin{align}I_{n+1}&=2W_{2n+3}\
                        &=frac{2(2n+2)}{2n+3}W_{2n+1}\
                        &=frac{2(n+1)}{2n+3}I_{n}
                        end{align}






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          On the path of Nikola Mijušković...



                          begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}



                          Perform the change of variable $x=sin t$,



                          begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
                          &=2W_{2n+1}
                          end{align}



                          $W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )



                          It is known that, for $ngeq 0$,



                          begin{align}W_1&=1\
                          W_{n+2}&=frac{n+1}{n+2}W_nend{align}



                          Therefore,



                          begin{align}I_{n+1}&=2W_{2n+3}\
                          &=frac{2(2n+2)}{2n+3}W_{2n+1}\
                          &=frac{2(n+1)}{2n+3}I_{n}
                          end{align}






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            On the path of Nikola Mijušković...



                            begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}



                            Perform the change of variable $x=sin t$,



                            begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
                            &=2W_{2n+1}
                            end{align}



                            $W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )



                            It is known that, for $ngeq 0$,



                            begin{align}W_1&=1\
                            W_{n+2}&=frac{n+1}{n+2}W_nend{align}



                            Therefore,



                            begin{align}I_{n+1}&=2W_{2n+3}\
                            &=frac{2(2n+2)}{2n+3}W_{2n+1}\
                            &=frac{2(n+1)}{2n+3}I_{n}
                            end{align}






                            share|cite|improve this answer









                            $endgroup$



                            On the path of Nikola Mijušković...



                            begin{align}I_n&=int_{-1}^1 (1-x^2)^n, dx\&=2int_{0}^1 (1-x^2)^n, dxend{align}



                            Perform the change of variable $x=sin t$,



                            begin{align}I_n&=2int_{0}^{frac{pi}{2}} cos^{2n+1}t, dt\
                            &=2W_{2n+1}
                            end{align}



                            $W_n$ is the n-th Wallis number (see: https://en.wikipedia.org/wiki/Wallis%27_integrals )



                            It is known that, for $ngeq 0$,



                            begin{align}W_1&=1\
                            W_{n+2}&=frac{n+1}{n+2}W_nend{align}



                            Therefore,



                            begin{align}I_{n+1}&=2W_{2n+3}\
                            &=frac{2(2n+2)}{2n+3}W_{2n+1}\
                            &=frac{2(n+1)}{2n+3}I_{n}
                            end{align}







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 25 at 20:55









                            FDPFDP

                            6,06211829




                            6,06211829






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086997%2fdetermine-the-recurrence-formula%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Mario Kart Wii

                                The Binding of Isaac: Rebirth/Afterbirth

                                What does “Dominus providebit” mean?