solving Second Order Non-homogeneous Cauchy-Euler Differential Equations
$begingroup$
$2x^2y''-11xy'-7y=3x^7$
It has two real solutions : $7,-frac{1}{2}$
I got the general solution for the homogeneous part: $y_g =c_1x^7+frac{c_2}{sqrt{x}}$
Now I want to get the particular solution for $y_g=3x^7$
Which method is best here? I used The "variation of parameters method" but I think I got stuck with the integral:
$W(x^7,x^{frac{1}{2}})=...=-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}$
$y_p= -x^7intfrac{x^{-frac{1}{2}}3x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx+x^{-frac{1}{2}}intfrac{x^73x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx$
Am I doing this right?
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
$2x^2y''-11xy'-7y=3x^7$
It has two real solutions : $7,-frac{1}{2}$
I got the general solution for the homogeneous part: $y_g =c_1x^7+frac{c_2}{sqrt{x}}$
Now I want to get the particular solution for $y_g=3x^7$
Which method is best here? I used The "variation of parameters method" but I think I got stuck with the integral:
$W(x^7,x^{frac{1}{2}})=...=-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}$
$y_p= -x^7intfrac{x^{-frac{1}{2}}3x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx+x^{-frac{1}{2}}intfrac{x^73x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx$
Am I doing this right?
ordinary-differential-equations
$endgroup$
1
$begingroup$
You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
$endgroup$
– Dylan
Jan 19 at 15:27
$begingroup$
@Dylan, Yup It works! That's even simpler.Thank you
$endgroup$
– NPLS
Jan 19 at 16:13
add a comment |
$begingroup$
$2x^2y''-11xy'-7y=3x^7$
It has two real solutions : $7,-frac{1}{2}$
I got the general solution for the homogeneous part: $y_g =c_1x^7+frac{c_2}{sqrt{x}}$
Now I want to get the particular solution for $y_g=3x^7$
Which method is best here? I used The "variation of parameters method" but I think I got stuck with the integral:
$W(x^7,x^{frac{1}{2}})=...=-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}$
$y_p= -x^7intfrac{x^{-frac{1}{2}}3x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx+x^{-frac{1}{2}}intfrac{x^73x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx$
Am I doing this right?
ordinary-differential-equations
$endgroup$
$2x^2y''-11xy'-7y=3x^7$
It has two real solutions : $7,-frac{1}{2}$
I got the general solution for the homogeneous part: $y_g =c_1x^7+frac{c_2}{sqrt{x}}$
Now I want to get the particular solution for $y_g=3x^7$
Which method is best here? I used The "variation of parameters method" but I think I got stuck with the integral:
$W(x^7,x^{frac{1}{2}})=...=-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}$
$y_p= -x^7intfrac{x^{-frac{1}{2}}3x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx+x^{-frac{1}{2}}intfrac{x^73x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx$
Am I doing this right?
ordinary-differential-equations
ordinary-differential-equations
asked Jan 19 at 14:44
NPLSNPLS
7112
7112
1
$begingroup$
You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
$endgroup$
– Dylan
Jan 19 at 15:27
$begingroup$
@Dylan, Yup It works! That's even simpler.Thank you
$endgroup$
– NPLS
Jan 19 at 16:13
add a comment |
1
$begingroup$
You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
$endgroup$
– Dylan
Jan 19 at 15:27
$begingroup$
@Dylan, Yup It works! That's even simpler.Thank you
$endgroup$
– NPLS
Jan 19 at 16:13
1
1
$begingroup$
You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
$endgroup$
– Dylan
Jan 19 at 15:27
$begingroup$
You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
$endgroup$
– Dylan
Jan 19 at 15:27
$begingroup$
@Dylan, Yup It works! That's even simpler.Thank you
$endgroup$
– NPLS
Jan 19 at 16:13
$begingroup$
@Dylan, Yup It works! That's even simpler.Thank you
$endgroup$
– NPLS
Jan 19 at 16:13
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
$$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
$$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
$$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
and we get
$$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079421%2fsolving-second-order-non-homogeneous-cauchy-euler-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
$$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
$$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
$$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
and we get
$$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.
$endgroup$
add a comment |
$begingroup$
Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
$$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
$$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
$$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
and we get
$$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.
$endgroup$
add a comment |
$begingroup$
Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
$$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
$$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
$$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
and we get
$$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.
$endgroup$
Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
$$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
$$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
$$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
and we get
$$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.
edited Jan 19 at 15:27
answered Jan 19 at 14:53
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
75.4k42866
75.4k42866
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079421%2fsolving-second-order-non-homogeneous-cauchy-euler-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
$endgroup$
– Dylan
Jan 19 at 15:27
$begingroup$
@Dylan, Yup It works! That's even simpler.Thank you
$endgroup$
– NPLS
Jan 19 at 16:13