solving Second Order Non-homogeneous Cauchy-Euler Differential Equations












0












$begingroup$


$2x^2y''-11xy'-7y=3x^7$



It has two real solutions : $7,-frac{1}{2}$



I got the general solution for the homogeneous part: $y_g =c_1x^7+frac{c_2}{sqrt{x}}$



Now I want to get the particular solution for $y_g=3x^7$



Which method is best here? I used The "variation of parameters method" but I think I got stuck with the integral:



$W(x^7,x^{frac{1}{2}})=...=-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}$



$y_p= -x^7intfrac{x^{-frac{1}{2}}3x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx+x^{-frac{1}{2}}intfrac{x^73x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx$



Am I doing this right?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
    $endgroup$
    – Dylan
    Jan 19 at 15:27












  • $begingroup$
    @Dylan, Yup It works! That's even simpler.Thank you
    $endgroup$
    – NPLS
    Jan 19 at 16:13
















0












$begingroup$


$2x^2y''-11xy'-7y=3x^7$



It has two real solutions : $7,-frac{1}{2}$



I got the general solution for the homogeneous part: $y_g =c_1x^7+frac{c_2}{sqrt{x}}$



Now I want to get the particular solution for $y_g=3x^7$



Which method is best here? I used The "variation of parameters method" but I think I got stuck with the integral:



$W(x^7,x^{frac{1}{2}})=...=-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}$



$y_p= -x^7intfrac{x^{-frac{1}{2}}3x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx+x^{-frac{1}{2}}intfrac{x^73x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx$



Am I doing this right?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
    $endgroup$
    – Dylan
    Jan 19 at 15:27












  • $begingroup$
    @Dylan, Yup It works! That's even simpler.Thank you
    $endgroup$
    – NPLS
    Jan 19 at 16:13














0












0








0





$begingroup$


$2x^2y''-11xy'-7y=3x^7$



It has two real solutions : $7,-frac{1}{2}$



I got the general solution for the homogeneous part: $y_g =c_1x^7+frac{c_2}{sqrt{x}}$



Now I want to get the particular solution for $y_g=3x^7$



Which method is best here? I used The "variation of parameters method" but I think I got stuck with the integral:



$W(x^7,x^{frac{1}{2}})=...=-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}$



$y_p= -x^7intfrac{x^{-frac{1}{2}}3x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx+x^{-frac{1}{2}}intfrac{x^73x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx$



Am I doing this right?










share|cite|improve this question









$endgroup$




$2x^2y''-11xy'-7y=3x^7$



It has two real solutions : $7,-frac{1}{2}$



I got the general solution for the homogeneous part: $y_g =c_1x^7+frac{c_2}{sqrt{x}}$



Now I want to get the particular solution for $y_g=3x^7$



Which method is best here? I used The "variation of parameters method" but I think I got stuck with the integral:



$W(x^7,x^{frac{1}{2}})=...=-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}$



$y_p= -x^7intfrac{x^{-frac{1}{2}}3x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx+x^{-frac{1}{2}}intfrac{x^73x^5}{-frac{1}{2}x^{frac{15}{2}}-7x^{frac{11}{2}}}dx$



Am I doing this right?







ordinary-differential-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 19 at 14:44









NPLSNPLS

7112




7112








  • 1




    $begingroup$
    You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
    $endgroup$
    – Dylan
    Jan 19 at 15:27












  • $begingroup$
    @Dylan, Yup It works! That's even simpler.Thank you
    $endgroup$
    – NPLS
    Jan 19 at 16:13














  • 1




    $begingroup$
    You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
    $endgroup$
    – Dylan
    Jan 19 at 15:27












  • $begingroup$
    @Dylan, Yup It works! That's even simpler.Thank you
    $endgroup$
    – NPLS
    Jan 19 at 16:13








1




1




$begingroup$
You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
$endgroup$
– Dylan
Jan 19 at 15:27






$begingroup$
You can use undertermined coefficients here. The particular solution has the form $y_p(x)= Ax^7ln x$
$endgroup$
– Dylan
Jan 19 at 15:27














$begingroup$
@Dylan, Yup It works! That's even simpler.Thank you
$endgroup$
– NPLS
Jan 19 at 16:13




$begingroup$
@Dylan, Yup It works! That's even simpler.Thank you
$endgroup$
– NPLS
Jan 19 at 16:13










1 Answer
1






active

oldest

votes


















0












$begingroup$

Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
$$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
$$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
$$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
and we get
$$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079421%2fsolving-second-order-non-homogeneous-cauchy-euler-differential-equations%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
    $$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
    Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
    $$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
    And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
    $$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
    and we get
    $$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
      $$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
      Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
      $$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
      And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
      $$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
      and we get
      $$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
        $$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
        Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
        $$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
        And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
        $$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
        and we get
        $$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.






        share|cite|improve this answer











        $endgroup$



        Make the ansatz $$y(x)=x^r$$ then you have to solve $$2r^2-13r-7=0$$ and you get
        $$y(x)=frac{C_1}{sqrt{x}}+C_2x^7$$ a particular solution can be find by the method of variation of the constants. It is $$y_p=-frac{2x^7}{75}+frac{1}{5}x^7log(x)$$
        Let $$y_{b_1}=frac{1}{sqrt{x}},y_{b_2}=x^7$$ then we get
        $$W(x)=begin{vmatrix}frac{1}{sqrt{x}}&x^7\frac{d}{dx}(frac{1}{sqrt{x}})&frac{d}{dx}(x^7)end{vmatrix}$$
        And this is $$frac{15}{2}x^{frac{11}{2}}$$. Let $$f(x)=frac{3}{2}x^5$$ then we obtain
        $$v_1=-intfrac{f(x)y_{b_2}}{W(x)}dx$$ and $$v_2=frac{f(x)y_{b_1}(x)}{W(x)}dx$$
        and we get
        $$y_p(x)=v_1y_{b_1}(x)+v_2(x)y_{b_1}(x)$$ this gives the result above.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 19 at 15:27

























        answered Jan 19 at 14:53









        Dr. Sonnhard GraubnerDr. Sonnhard Graubner

        75.4k42866




        75.4k42866






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079421%2fsolving-second-order-non-homogeneous-cauchy-euler-differential-equations%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            What does “Dominus providebit” mean?

            Antonio Litta Visconti Arese