How to find the inverse of the method to find the nth lexicographic logical permutation












0












$begingroup$


I'm looking for a proper method to find the nth logical permutation of a particular sequence that is able to return the desired permutation. For example, for a sequence 1234567890, the 100,001st logical permutation is 1469037825, as calculated by:



To find the first digit,



Since there are 10 digits, fixing the first digit, there are 9! ways to permute the rest.



$ 100 001 - 0(9!) = 100 001$ (As 1x9! is larger than 100001)



Hence the first digit is the 0th element in the list of digits 1234567890, i.e. $ 1$



To find the second digit



$ 100 001 - 2(8!) = 19361$



Hence the second digit is the 2nd element in the list of digits 234567890, i.e. $ 4$ (counting from 0)



To find the third digit



$ 19361 - 3(7!) = 4241$



Hence the third digit is the 3rd element in the list of digits 23567890, i.e. $ 6$ (counting from 0)



And so forth



$ 4241 - 5(6!) = 641 $ 5th in 2357890 is $ 9$



$ 641- 5(5!) = 41$ 5th in 235780 is $ 0$



$ 41 - 1(4!) = 17 $ 1st in 23578 is $ 3$



$ 17 - 2(3!) = 5$ 2nd in 2578 is $ 7$



$ 5 - 2(2!) = 1 $ 2nd in 258 is $ 8$



$ 1 - 0(1!) = 1 $ 0th in 25 is $ 2$ (Remainder has to be more than 0)



Hence last digit remaining is $ 5$



The 100,001st permutation of 1234567890 is 1469037825



How would I then be able to find the value of n, such than the nth permutation of $ 1469037825$ is $ 1234567890?$










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I'm looking for a proper method to find the nth logical permutation of a particular sequence that is able to return the desired permutation. For example, for a sequence 1234567890, the 100,001st logical permutation is 1469037825, as calculated by:



    To find the first digit,



    Since there are 10 digits, fixing the first digit, there are 9! ways to permute the rest.



    $ 100 001 - 0(9!) = 100 001$ (As 1x9! is larger than 100001)



    Hence the first digit is the 0th element in the list of digits 1234567890, i.e. $ 1$



    To find the second digit



    $ 100 001 - 2(8!) = 19361$



    Hence the second digit is the 2nd element in the list of digits 234567890, i.e. $ 4$ (counting from 0)



    To find the third digit



    $ 19361 - 3(7!) = 4241$



    Hence the third digit is the 3rd element in the list of digits 23567890, i.e. $ 6$ (counting from 0)



    And so forth



    $ 4241 - 5(6!) = 641 $ 5th in 2357890 is $ 9$



    $ 641- 5(5!) = 41$ 5th in 235780 is $ 0$



    $ 41 - 1(4!) = 17 $ 1st in 23578 is $ 3$



    $ 17 - 2(3!) = 5$ 2nd in 2578 is $ 7$



    $ 5 - 2(2!) = 1 $ 2nd in 258 is $ 8$



    $ 1 - 0(1!) = 1 $ 0th in 25 is $ 2$ (Remainder has to be more than 0)



    Hence last digit remaining is $ 5$



    The 100,001st permutation of 1234567890 is 1469037825



    How would I then be able to find the value of n, such than the nth permutation of $ 1469037825$ is $ 1234567890?$










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I'm looking for a proper method to find the nth logical permutation of a particular sequence that is able to return the desired permutation. For example, for a sequence 1234567890, the 100,001st logical permutation is 1469037825, as calculated by:



      To find the first digit,



      Since there are 10 digits, fixing the first digit, there are 9! ways to permute the rest.



      $ 100 001 - 0(9!) = 100 001$ (As 1x9! is larger than 100001)



      Hence the first digit is the 0th element in the list of digits 1234567890, i.e. $ 1$



      To find the second digit



      $ 100 001 - 2(8!) = 19361$



      Hence the second digit is the 2nd element in the list of digits 234567890, i.e. $ 4$ (counting from 0)



      To find the third digit



      $ 19361 - 3(7!) = 4241$



      Hence the third digit is the 3rd element in the list of digits 23567890, i.e. $ 6$ (counting from 0)



      And so forth



      $ 4241 - 5(6!) = 641 $ 5th in 2357890 is $ 9$



      $ 641- 5(5!) = 41$ 5th in 235780 is $ 0$



      $ 41 - 1(4!) = 17 $ 1st in 23578 is $ 3$



      $ 17 - 2(3!) = 5$ 2nd in 2578 is $ 7$



      $ 5 - 2(2!) = 1 $ 2nd in 258 is $ 8$



      $ 1 - 0(1!) = 1 $ 0th in 25 is $ 2$ (Remainder has to be more than 0)



      Hence last digit remaining is $ 5$



      The 100,001st permutation of 1234567890 is 1469037825



      How would I then be able to find the value of n, such than the nth permutation of $ 1469037825$ is $ 1234567890?$










      share|cite|improve this question









      $endgroup$




      I'm looking for a proper method to find the nth logical permutation of a particular sequence that is able to return the desired permutation. For example, for a sequence 1234567890, the 100,001st logical permutation is 1469037825, as calculated by:



      To find the first digit,



      Since there are 10 digits, fixing the first digit, there are 9! ways to permute the rest.



      $ 100 001 - 0(9!) = 100 001$ (As 1x9! is larger than 100001)



      Hence the first digit is the 0th element in the list of digits 1234567890, i.e. $ 1$



      To find the second digit



      $ 100 001 - 2(8!) = 19361$



      Hence the second digit is the 2nd element in the list of digits 234567890, i.e. $ 4$ (counting from 0)



      To find the third digit



      $ 19361 - 3(7!) = 4241$



      Hence the third digit is the 3rd element in the list of digits 23567890, i.e. $ 6$ (counting from 0)



      And so forth



      $ 4241 - 5(6!) = 641 $ 5th in 2357890 is $ 9$



      $ 641- 5(5!) = 41$ 5th in 235780 is $ 0$



      $ 41 - 1(4!) = 17 $ 1st in 23578 is $ 3$



      $ 17 - 2(3!) = 5$ 2nd in 2578 is $ 7$



      $ 5 - 2(2!) = 1 $ 2nd in 258 is $ 8$



      $ 1 - 0(1!) = 1 $ 0th in 25 is $ 2$ (Remainder has to be more than 0)



      Hence last digit remaining is $ 5$



      The 100,001st permutation of 1234567890 is 1469037825



      How would I then be able to find the value of n, such than the nth permutation of $ 1469037825$ is $ 1234567890?$







      combinatorics permutations puzzle inverse-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 19 at 14:41









      RicharCdRicharCd

      54




      54






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          1469037825

          1234567890
          ^----------> 0 * 9!
          234567890
          ^--------> 2 * 8!
          23567890
          ^-------> 3 * 7!
          2357890
          ^-----> 5 * 6!
          235780
          ^-----> 5 * 5!
          23578
          ^---------> 1 * 4!
          2578
          ^--------> 2 * 3!
          258
          ^--------> 2 * 2!
          25
          ^----------> 0 * 1!


          $$0cdot9!+2cdot8!+3cdot7!+5cdot6!+5cdot5!+1cdot4!+2cdot3!+2cdot2!+0cdot1!+1=100001$$
          This shows that $1469037825$ is the $100,001^text{st}$ lexicographic permutation of $1234567890$



          1234567890

          1469037825
          ^----------> 0 * 9!
          469037825
          ^---> 7 * 8!
          46903785
          ^------> 4 * 7!
          4690785
          ^----------> 0 * 6!
          690785
          ^-----> 5 * 5!
          69078
          ^----------> 0 * 4!
          9078
          ^--------> 2 * 3!
          908
          ^--------> 2 * 2!
          90
          ^----------> 0 * 1!


          $$0cdot9!+7cdot8!+4cdot7!+0cdot6!+5cdot5!+0cdot4!+2cdot3!+2cdot2!+0cdot1!+1=303017$$
          This shows that $1234567890$ is the $303,017^text{th}$ lexicographic permutation of $1469037825$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks Daniel! This method works perfectly and has a very clean working.
            $endgroup$
            – RicharCd
            Jan 21 at 14:03











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079415%2fhow-to-find-the-inverse-of-the-method-to-find-the-nth-lexicographic-logical-perm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          1469037825

          1234567890
          ^----------> 0 * 9!
          234567890
          ^--------> 2 * 8!
          23567890
          ^-------> 3 * 7!
          2357890
          ^-----> 5 * 6!
          235780
          ^-----> 5 * 5!
          23578
          ^---------> 1 * 4!
          2578
          ^--------> 2 * 3!
          258
          ^--------> 2 * 2!
          25
          ^----------> 0 * 1!


          $$0cdot9!+2cdot8!+3cdot7!+5cdot6!+5cdot5!+1cdot4!+2cdot3!+2cdot2!+0cdot1!+1=100001$$
          This shows that $1469037825$ is the $100,001^text{st}$ lexicographic permutation of $1234567890$



          1234567890

          1469037825
          ^----------> 0 * 9!
          469037825
          ^---> 7 * 8!
          46903785
          ^------> 4 * 7!
          4690785
          ^----------> 0 * 6!
          690785
          ^-----> 5 * 5!
          69078
          ^----------> 0 * 4!
          9078
          ^--------> 2 * 3!
          908
          ^--------> 2 * 2!
          90
          ^----------> 0 * 1!


          $$0cdot9!+7cdot8!+4cdot7!+0cdot6!+5cdot5!+0cdot4!+2cdot3!+2cdot2!+0cdot1!+1=303017$$
          This shows that $1234567890$ is the $303,017^text{th}$ lexicographic permutation of $1469037825$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks Daniel! This method works perfectly and has a very clean working.
            $endgroup$
            – RicharCd
            Jan 21 at 14:03
















          1












          $begingroup$

          1469037825

          1234567890
          ^----------> 0 * 9!
          234567890
          ^--------> 2 * 8!
          23567890
          ^-------> 3 * 7!
          2357890
          ^-----> 5 * 6!
          235780
          ^-----> 5 * 5!
          23578
          ^---------> 1 * 4!
          2578
          ^--------> 2 * 3!
          258
          ^--------> 2 * 2!
          25
          ^----------> 0 * 1!


          $$0cdot9!+2cdot8!+3cdot7!+5cdot6!+5cdot5!+1cdot4!+2cdot3!+2cdot2!+0cdot1!+1=100001$$
          This shows that $1469037825$ is the $100,001^text{st}$ lexicographic permutation of $1234567890$



          1234567890

          1469037825
          ^----------> 0 * 9!
          469037825
          ^---> 7 * 8!
          46903785
          ^------> 4 * 7!
          4690785
          ^----------> 0 * 6!
          690785
          ^-----> 5 * 5!
          69078
          ^----------> 0 * 4!
          9078
          ^--------> 2 * 3!
          908
          ^--------> 2 * 2!
          90
          ^----------> 0 * 1!


          $$0cdot9!+7cdot8!+4cdot7!+0cdot6!+5cdot5!+0cdot4!+2cdot3!+2cdot2!+0cdot1!+1=303017$$
          This shows that $1234567890$ is the $303,017^text{th}$ lexicographic permutation of $1469037825$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks Daniel! This method works perfectly and has a very clean working.
            $endgroup$
            – RicharCd
            Jan 21 at 14:03














          1












          1








          1





          $begingroup$

          1469037825

          1234567890
          ^----------> 0 * 9!
          234567890
          ^--------> 2 * 8!
          23567890
          ^-------> 3 * 7!
          2357890
          ^-----> 5 * 6!
          235780
          ^-----> 5 * 5!
          23578
          ^---------> 1 * 4!
          2578
          ^--------> 2 * 3!
          258
          ^--------> 2 * 2!
          25
          ^----------> 0 * 1!


          $$0cdot9!+2cdot8!+3cdot7!+5cdot6!+5cdot5!+1cdot4!+2cdot3!+2cdot2!+0cdot1!+1=100001$$
          This shows that $1469037825$ is the $100,001^text{st}$ lexicographic permutation of $1234567890$



          1234567890

          1469037825
          ^----------> 0 * 9!
          469037825
          ^---> 7 * 8!
          46903785
          ^------> 4 * 7!
          4690785
          ^----------> 0 * 6!
          690785
          ^-----> 5 * 5!
          69078
          ^----------> 0 * 4!
          9078
          ^--------> 2 * 3!
          908
          ^--------> 2 * 2!
          90
          ^----------> 0 * 1!


          $$0cdot9!+7cdot8!+4cdot7!+0cdot6!+5cdot5!+0cdot4!+2cdot3!+2cdot2!+0cdot1!+1=303017$$
          This shows that $1234567890$ is the $303,017^text{th}$ lexicographic permutation of $1469037825$






          share|cite|improve this answer









          $endgroup$



          1469037825

          1234567890
          ^----------> 0 * 9!
          234567890
          ^--------> 2 * 8!
          23567890
          ^-------> 3 * 7!
          2357890
          ^-----> 5 * 6!
          235780
          ^-----> 5 * 5!
          23578
          ^---------> 1 * 4!
          2578
          ^--------> 2 * 3!
          258
          ^--------> 2 * 2!
          25
          ^----------> 0 * 1!


          $$0cdot9!+2cdot8!+3cdot7!+5cdot6!+5cdot5!+1cdot4!+2cdot3!+2cdot2!+0cdot1!+1=100001$$
          This shows that $1469037825$ is the $100,001^text{st}$ lexicographic permutation of $1234567890$



          1234567890

          1469037825
          ^----------> 0 * 9!
          469037825
          ^---> 7 * 8!
          46903785
          ^------> 4 * 7!
          4690785
          ^----------> 0 * 6!
          690785
          ^-----> 5 * 5!
          69078
          ^----------> 0 * 4!
          9078
          ^--------> 2 * 3!
          908
          ^--------> 2 * 2!
          90
          ^----------> 0 * 1!


          $$0cdot9!+7cdot8!+4cdot7!+0cdot6!+5cdot5!+0cdot4!+2cdot3!+2cdot2!+0cdot1!+1=303017$$
          This shows that $1234567890$ is the $303,017^text{th}$ lexicographic permutation of $1469037825$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 19 at 15:39









          Daniel MathiasDaniel Mathias

          1,15118




          1,15118












          • $begingroup$
            Thanks Daniel! This method works perfectly and has a very clean working.
            $endgroup$
            – RicharCd
            Jan 21 at 14:03


















          • $begingroup$
            Thanks Daniel! This method works perfectly and has a very clean working.
            $endgroup$
            – RicharCd
            Jan 21 at 14:03
















          $begingroup$
          Thanks Daniel! This method works perfectly and has a very clean working.
          $endgroup$
          – RicharCd
          Jan 21 at 14:03




          $begingroup$
          Thanks Daniel! This method works perfectly and has a very clean working.
          $endgroup$
          – RicharCd
          Jan 21 at 14:03


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079415%2fhow-to-find-the-inverse-of-the-method-to-find-the-nth-lexicographic-logical-perm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          What does “Dominus providebit” mean?

          The Binding of Isaac: Rebirth/Afterbirth