Triangle inequality for linear operators

Multi tool use
$begingroup$
For a linear operator $R in B(X,Y)$ and some $k in mathbb{R}_{>0}$, do we have
$$(forall x in X:lVert R(x) rVert leq k lVert x rVert) Rightarrow lVert R rVert leq k
$$?
I'd like to use this fact to prove the triangle inequality for norms of linear operators $S, T in B(X,Y)$, of which I know that
$$forall x in X:lVert (S+T)(x)rVert leq (lVert S rVert + rVert T lVert) lVert xrVert
$$
analysis operator-theory norm
$endgroup$
add a comment |
$begingroup$
For a linear operator $R in B(X,Y)$ and some $k in mathbb{R}_{>0}$, do we have
$$(forall x in X:lVert R(x) rVert leq k lVert x rVert) Rightarrow lVert R rVert leq k
$$?
I'd like to use this fact to prove the triangle inequality for norms of linear operators $S, T in B(X,Y)$, of which I know that
$$forall x in X:lVert (S+T)(x)rVert leq (lVert S rVert + rVert T lVert) lVert xrVert
$$
analysis operator-theory norm
$endgroup$
add a comment |
$begingroup$
For a linear operator $R in B(X,Y)$ and some $k in mathbb{R}_{>0}$, do we have
$$(forall x in X:lVert R(x) rVert leq k lVert x rVert) Rightarrow lVert R rVert leq k
$$?
I'd like to use this fact to prove the triangle inequality for norms of linear operators $S, T in B(X,Y)$, of which I know that
$$forall x in X:lVert (S+T)(x)rVert leq (lVert S rVert + rVert T lVert) lVert xrVert
$$
analysis operator-theory norm
$endgroup$
For a linear operator $R in B(X,Y)$ and some $k in mathbb{R}_{>0}$, do we have
$$(forall x in X:lVert R(x) rVert leq k lVert x rVert) Rightarrow lVert R rVert leq k
$$?
I'd like to use this fact to prove the triangle inequality for norms of linear operators $S, T in B(X,Y)$, of which I know that
$$forall x in X:lVert (S+T)(x)rVert leq (lVert S rVert + rVert T lVert) lVert xrVert
$$
analysis operator-theory norm
analysis operator-theory norm
asked Jan 17 at 18:25
Jos van NieuwmanJos van Nieuwman
439
439
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that
$$|R|=sup{|R(x)|:xin X,|x|=1}.$$
Indeed, write $p(R)=sup{|R(x)|:xin X,|x|=1}$. Since
$${|R(x)|:xin X,|x|=1}subset{|R(x)|:xin X,|x|leq1},$$
we have $p(R)leq|R|$. On the other hand, if $0<|x|leq1$, then
$$|R(x)|leqfrac{1}{|x|}|R(x)|=left|Rleft(frac{x}{|x|}right)right|leq p(R).$$
Taking the supremum over all such $x$ yields $|R|leq p(R)$, and thus $|R|=p(R)$.
If now $xin X$ and $|x|=1$, then by assumption $|R(x)|leq k|x|=k$. Thus $k$ is an upper bound of ${|R(x)|:xin X,|x|=1}$, whence $|R|leq k$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077343%2ftriangle-inequality-for-linear-operators%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
$$|R|=sup{|R(x)|:xin X,|x|=1}.$$
Indeed, write $p(R)=sup{|R(x)|:xin X,|x|=1}$. Since
$${|R(x)|:xin X,|x|=1}subset{|R(x)|:xin X,|x|leq1},$$
we have $p(R)leq|R|$. On the other hand, if $0<|x|leq1$, then
$$|R(x)|leqfrac{1}{|x|}|R(x)|=left|Rleft(frac{x}{|x|}right)right|leq p(R).$$
Taking the supremum over all such $x$ yields $|R|leq p(R)$, and thus $|R|=p(R)$.
If now $xin X$ and $|x|=1$, then by assumption $|R(x)|leq k|x|=k$. Thus $k$ is an upper bound of ${|R(x)|:xin X,|x|=1}$, whence $|R|leq k$.
$endgroup$
add a comment |
$begingroup$
Note that
$$|R|=sup{|R(x)|:xin X,|x|=1}.$$
Indeed, write $p(R)=sup{|R(x)|:xin X,|x|=1}$. Since
$${|R(x)|:xin X,|x|=1}subset{|R(x)|:xin X,|x|leq1},$$
we have $p(R)leq|R|$. On the other hand, if $0<|x|leq1$, then
$$|R(x)|leqfrac{1}{|x|}|R(x)|=left|Rleft(frac{x}{|x|}right)right|leq p(R).$$
Taking the supremum over all such $x$ yields $|R|leq p(R)$, and thus $|R|=p(R)$.
If now $xin X$ and $|x|=1$, then by assumption $|R(x)|leq k|x|=k$. Thus $k$ is an upper bound of ${|R(x)|:xin X,|x|=1}$, whence $|R|leq k$.
$endgroup$
add a comment |
$begingroup$
Note that
$$|R|=sup{|R(x)|:xin X,|x|=1}.$$
Indeed, write $p(R)=sup{|R(x)|:xin X,|x|=1}$. Since
$${|R(x)|:xin X,|x|=1}subset{|R(x)|:xin X,|x|leq1},$$
we have $p(R)leq|R|$. On the other hand, if $0<|x|leq1$, then
$$|R(x)|leqfrac{1}{|x|}|R(x)|=left|Rleft(frac{x}{|x|}right)right|leq p(R).$$
Taking the supremum over all such $x$ yields $|R|leq p(R)$, and thus $|R|=p(R)$.
If now $xin X$ and $|x|=1$, then by assumption $|R(x)|leq k|x|=k$. Thus $k$ is an upper bound of ${|R(x)|:xin X,|x|=1}$, whence $|R|leq k$.
$endgroup$
Note that
$$|R|=sup{|R(x)|:xin X,|x|=1}.$$
Indeed, write $p(R)=sup{|R(x)|:xin X,|x|=1}$. Since
$${|R(x)|:xin X,|x|=1}subset{|R(x)|:xin X,|x|leq1},$$
we have $p(R)leq|R|$. On the other hand, if $0<|x|leq1$, then
$$|R(x)|leqfrac{1}{|x|}|R(x)|=left|Rleft(frac{x}{|x|}right)right|leq p(R).$$
Taking the supremum over all such $x$ yields $|R|leq p(R)$, and thus $|R|=p(R)$.
If now $xin X$ and $|x|=1$, then by assumption $|R(x)|leq k|x|=k$. Thus $k$ is an upper bound of ${|R(x)|:xin X,|x|=1}$, whence $|R|leq k$.
edited Jan 17 at 18:51
answered Jan 17 at 18:28


AweyganAweygan
14.2k21441
14.2k21441
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077343%2ftriangle-inequality-for-linear-operators%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
by apRyL5 pW5Xp C4VTLn5PNzOJhDCSX7v7PHC,Ck qB71cFBedL1VG0gIsdKo