Prove $lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty iff lim_{ntoinfty}|x_n| =lim_{ntoinfty}|y_n|...

Multi tool use
$begingroup$
Let $x_n$ and $y_n$ denote sequences such that:
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty
$$
Prove:
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty iff lim_{ntoinfty}|x_n| =lim_{ntoinfty}|y_n| =lim_{ntoinfty}x_ny_n =+infty
$$
I've started with the first case ($implies$):
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty \
stackrel{text{def}}{iff} forall epsilon > 0 exists NinBbb N: forall n>N implies ||x_n + y_n| - |x_n - y_n|| ge epsilon
$$
We want to show that $|x_n| ge epsilon$ and $|y_n|ge epsilon$. By triangular inequality:
$$
|x_n + y_n| + |x_n - y_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon
$$
At the same time:
$$
|x_n + y_n| + |x_n - y_n| ge |(x_n + y_n) + (x_n - y_n)| = 2|x_n|
$$
Or:
$$
|x_n + y_n| + |y_n - x_n| ge |(x_n + y_n) + (y_n - x_n)| = 2|y_n|
$$
Here is where the first questionable case comes in. It seems that:
$$
|x_n + y_n| + |x_n - y_n| ge 2|x_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon\
text{and}\
|x_n + y_n| + |y_n - x_n| ge 2|y_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon tag1
$$
But I'm not sure how to justify that. I've checked various cases like $x<0 land y<0$ and 3 others, for all it seems to hold. So based on this:
$$
forall epsilon >0 exists NinBbb N: forall n> N implies 2|x_n| ge epsilon \
forall epsilon >0 exists NinBbb N: forall n> N implies 2|y_n| ge epsilon
$$
Which shows:
$$
lim_{ntoinfty}|x_n| = lim_{ntoinfty}|y_n| = +infty
$$
In this part I'm interested in how to justify $(1)$ and where from it follows that:
$$
lim_{ntoinfty}x_ny_n = +infty
$$
Second case $(impliedby)$. This case I've no idea where to start from. We basically given three things:
$$
forall epsilon > 0 exists NinBbb N: forall n>N implies |x_n| ge epsilon\
forall epsilon > 0 exists NinBbb N: forall n>N implies |y_n| ge epsilon \
forall epsilon > 0 exists NinBbb N: forall n>N implies |x_ny_n| ge epsilon
$$
The problem is I don't see where to go from this.
Could you please verify the overall reasoning and help with ($impliedby$) and question from ($implies$), I still often have troubles with constructing those proofs since i'm a self-learner and have no one to refer to. Thank you!
calculus sequences-and-series limits proof-verification
$endgroup$
add a comment |
$begingroup$
Let $x_n$ and $y_n$ denote sequences such that:
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty
$$
Prove:
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty iff lim_{ntoinfty}|x_n| =lim_{ntoinfty}|y_n| =lim_{ntoinfty}x_ny_n =+infty
$$
I've started with the first case ($implies$):
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty \
stackrel{text{def}}{iff} forall epsilon > 0 exists NinBbb N: forall n>N implies ||x_n + y_n| - |x_n - y_n|| ge epsilon
$$
We want to show that $|x_n| ge epsilon$ and $|y_n|ge epsilon$. By triangular inequality:
$$
|x_n + y_n| + |x_n - y_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon
$$
At the same time:
$$
|x_n + y_n| + |x_n - y_n| ge |(x_n + y_n) + (x_n - y_n)| = 2|x_n|
$$
Or:
$$
|x_n + y_n| + |y_n - x_n| ge |(x_n + y_n) + (y_n - x_n)| = 2|y_n|
$$
Here is where the first questionable case comes in. It seems that:
$$
|x_n + y_n| + |x_n - y_n| ge 2|x_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon\
text{and}\
|x_n + y_n| + |y_n - x_n| ge 2|y_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon tag1
$$
But I'm not sure how to justify that. I've checked various cases like $x<0 land y<0$ and 3 others, for all it seems to hold. So based on this:
$$
forall epsilon >0 exists NinBbb N: forall n> N implies 2|x_n| ge epsilon \
forall epsilon >0 exists NinBbb N: forall n> N implies 2|y_n| ge epsilon
$$
Which shows:
$$
lim_{ntoinfty}|x_n| = lim_{ntoinfty}|y_n| = +infty
$$
In this part I'm interested in how to justify $(1)$ and where from it follows that:
$$
lim_{ntoinfty}x_ny_n = +infty
$$
Second case $(impliedby)$. This case I've no idea where to start from. We basically given three things:
$$
forall epsilon > 0 exists NinBbb N: forall n>N implies |x_n| ge epsilon\
forall epsilon > 0 exists NinBbb N: forall n>N implies |y_n| ge epsilon \
forall epsilon > 0 exists NinBbb N: forall n>N implies |x_ny_n| ge epsilon
$$
The problem is I don't see where to go from this.
Could you please verify the overall reasoning and help with ($impliedby$) and question from ($implies$), I still often have troubles with constructing those proofs since i'm a self-learner and have no one to refer to. Thank you!
calculus sequences-and-series limits proof-verification
$endgroup$
add a comment |
$begingroup$
Let $x_n$ and $y_n$ denote sequences such that:
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty
$$
Prove:
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty iff lim_{ntoinfty}|x_n| =lim_{ntoinfty}|y_n| =lim_{ntoinfty}x_ny_n =+infty
$$
I've started with the first case ($implies$):
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty \
stackrel{text{def}}{iff} forall epsilon > 0 exists NinBbb N: forall n>N implies ||x_n + y_n| - |x_n - y_n|| ge epsilon
$$
We want to show that $|x_n| ge epsilon$ and $|y_n|ge epsilon$. By triangular inequality:
$$
|x_n + y_n| + |x_n - y_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon
$$
At the same time:
$$
|x_n + y_n| + |x_n - y_n| ge |(x_n + y_n) + (x_n - y_n)| = 2|x_n|
$$
Or:
$$
|x_n + y_n| + |y_n - x_n| ge |(x_n + y_n) + (y_n - x_n)| = 2|y_n|
$$
Here is where the first questionable case comes in. It seems that:
$$
|x_n + y_n| + |x_n - y_n| ge 2|x_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon\
text{and}\
|x_n + y_n| + |y_n - x_n| ge 2|y_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon tag1
$$
But I'm not sure how to justify that. I've checked various cases like $x<0 land y<0$ and 3 others, for all it seems to hold. So based on this:
$$
forall epsilon >0 exists NinBbb N: forall n> N implies 2|x_n| ge epsilon \
forall epsilon >0 exists NinBbb N: forall n> N implies 2|y_n| ge epsilon
$$
Which shows:
$$
lim_{ntoinfty}|x_n| = lim_{ntoinfty}|y_n| = +infty
$$
In this part I'm interested in how to justify $(1)$ and where from it follows that:
$$
lim_{ntoinfty}x_ny_n = +infty
$$
Second case $(impliedby)$. This case I've no idea where to start from. We basically given three things:
$$
forall epsilon > 0 exists NinBbb N: forall n>N implies |x_n| ge epsilon\
forall epsilon > 0 exists NinBbb N: forall n>N implies |y_n| ge epsilon \
forall epsilon > 0 exists NinBbb N: forall n>N implies |x_ny_n| ge epsilon
$$
The problem is I don't see where to go from this.
Could you please verify the overall reasoning and help with ($impliedby$) and question from ($implies$), I still often have troubles with constructing those proofs since i'm a self-learner and have no one to refer to. Thank you!
calculus sequences-and-series limits proof-verification
$endgroup$
Let $x_n$ and $y_n$ denote sequences such that:
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty
$$
Prove:
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty iff lim_{ntoinfty}|x_n| =lim_{ntoinfty}|y_n| =lim_{ntoinfty}x_ny_n =+infty
$$
I've started with the first case ($implies$):
$$
lim_{ntoinfty}(|x_n + y_n| - |x_n - y_n|) = +infty \
stackrel{text{def}}{iff} forall epsilon > 0 exists NinBbb N: forall n>N implies ||x_n + y_n| - |x_n - y_n|| ge epsilon
$$
We want to show that $|x_n| ge epsilon$ and $|y_n|ge epsilon$. By triangular inequality:
$$
|x_n + y_n| + |x_n - y_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon
$$
At the same time:
$$
|x_n + y_n| + |x_n - y_n| ge |(x_n + y_n) + (x_n - y_n)| = 2|x_n|
$$
Or:
$$
|x_n + y_n| + |y_n - x_n| ge |(x_n + y_n) + (y_n - x_n)| = 2|y_n|
$$
Here is where the first questionable case comes in. It seems that:
$$
|x_n + y_n| + |x_n - y_n| ge 2|x_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon\
text{and}\
|x_n + y_n| + |y_n - x_n| ge 2|y_n| ge ||x_n + y_n| - |x_n - y_n|| ge epsilon tag1
$$
But I'm not sure how to justify that. I've checked various cases like $x<0 land y<0$ and 3 others, for all it seems to hold. So based on this:
$$
forall epsilon >0 exists NinBbb N: forall n> N implies 2|x_n| ge epsilon \
forall epsilon >0 exists NinBbb N: forall n> N implies 2|y_n| ge epsilon
$$
Which shows:
$$
lim_{ntoinfty}|x_n| = lim_{ntoinfty}|y_n| = +infty
$$
In this part I'm interested in how to justify $(1)$ and where from it follows that:
$$
lim_{ntoinfty}x_ny_n = +infty
$$
Second case $(impliedby)$. This case I've no idea where to start from. We basically given three things:
$$
forall epsilon > 0 exists NinBbb N: forall n>N implies |x_n| ge epsilon\
forall epsilon > 0 exists NinBbb N: forall n>N implies |y_n| ge epsilon \
forall epsilon > 0 exists NinBbb N: forall n>N implies |x_ny_n| ge epsilon
$$
The problem is I don't see where to go from this.
Could you please verify the overall reasoning and help with ($impliedby$) and question from ($implies$), I still often have troubles with constructing those proofs since i'm a self-learner and have no one to refer to. Thank you!
calculus sequences-and-series limits proof-verification
calculus sequences-and-series limits proof-verification
asked Jan 17 at 17:59
romanroman
2,21921224
2,21921224
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$(Longrightarrow)$ Note that by triangle inequality, we have
$$
2|x_n|=|(x_n+y_n)+(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|
$$ and
$$
2|y_n|=|(x_n+y_n)-(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|.
$$ By taking $ntoinfty$, we get
$$
lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty.
$$ Also note that
$
|x_n+y_n|ge |x_n-y_n|
$ holds eventually. Hence, by squaring both sides, we have
$x_ny_nge 0$. It follows that $lim_{ntoinfty}x_n y_n=lim_{ntoinfty}|x_n| |y_n|=infty.$
$(Longleftarrow)$ To show the converse, note that $lim_{ntoinfty}x_n y_n=infty$ implies that $$
|x_n+y_n|-|x_n-y_n|ge 0
$$ eventually. And since it is a positive sequence, we have
$$
lim_{ntoinfty}|x_n+y_n|-|x_n-y_n|=infty Longleftrightarrow lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2=infty.
$$ Now, we have
$$
left[|x_n+y_n|-|x_n-y_n|right]^2= 2(|x_n|^2+|y_n|^2) -2|x_n^2-y_n^2|=:L.
$$ Observe that if $x_n^2ge y_n^2$, then it holds $L=4|y_n|^2$ and otherwise, $L=4|x_n|^2$. This gives $L=4 min{|x_n|^2,|y_n|^2}$ and
$$
lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2= 4lim_{ntoinfty}min{|x_n|^2,|y_n|^2}=infty
$$ by the assumption that $lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty$. This proves the converse claim.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077296%2fprove-lim-n-to-inftyx-n-y-n-x-n-y-n-infty-iff-lim-n-to-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$(Longrightarrow)$ Note that by triangle inequality, we have
$$
2|x_n|=|(x_n+y_n)+(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|
$$ and
$$
2|y_n|=|(x_n+y_n)-(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|.
$$ By taking $ntoinfty$, we get
$$
lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty.
$$ Also note that
$
|x_n+y_n|ge |x_n-y_n|
$ holds eventually. Hence, by squaring both sides, we have
$x_ny_nge 0$. It follows that $lim_{ntoinfty}x_n y_n=lim_{ntoinfty}|x_n| |y_n|=infty.$
$(Longleftarrow)$ To show the converse, note that $lim_{ntoinfty}x_n y_n=infty$ implies that $$
|x_n+y_n|-|x_n-y_n|ge 0
$$ eventually. And since it is a positive sequence, we have
$$
lim_{ntoinfty}|x_n+y_n|-|x_n-y_n|=infty Longleftrightarrow lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2=infty.
$$ Now, we have
$$
left[|x_n+y_n|-|x_n-y_n|right]^2= 2(|x_n|^2+|y_n|^2) -2|x_n^2-y_n^2|=:L.
$$ Observe that if $x_n^2ge y_n^2$, then it holds $L=4|y_n|^2$ and otherwise, $L=4|x_n|^2$. This gives $L=4 min{|x_n|^2,|y_n|^2}$ and
$$
lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2= 4lim_{ntoinfty}min{|x_n|^2,|y_n|^2}=infty
$$ by the assumption that $lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty$. This proves the converse claim.
$endgroup$
add a comment |
$begingroup$
$(Longrightarrow)$ Note that by triangle inequality, we have
$$
2|x_n|=|(x_n+y_n)+(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|
$$ and
$$
2|y_n|=|(x_n+y_n)-(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|.
$$ By taking $ntoinfty$, we get
$$
lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty.
$$ Also note that
$
|x_n+y_n|ge |x_n-y_n|
$ holds eventually. Hence, by squaring both sides, we have
$x_ny_nge 0$. It follows that $lim_{ntoinfty}x_n y_n=lim_{ntoinfty}|x_n| |y_n|=infty.$
$(Longleftarrow)$ To show the converse, note that $lim_{ntoinfty}x_n y_n=infty$ implies that $$
|x_n+y_n|-|x_n-y_n|ge 0
$$ eventually. And since it is a positive sequence, we have
$$
lim_{ntoinfty}|x_n+y_n|-|x_n-y_n|=infty Longleftrightarrow lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2=infty.
$$ Now, we have
$$
left[|x_n+y_n|-|x_n-y_n|right]^2= 2(|x_n|^2+|y_n|^2) -2|x_n^2-y_n^2|=:L.
$$ Observe that if $x_n^2ge y_n^2$, then it holds $L=4|y_n|^2$ and otherwise, $L=4|x_n|^2$. This gives $L=4 min{|x_n|^2,|y_n|^2}$ and
$$
lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2= 4lim_{ntoinfty}min{|x_n|^2,|y_n|^2}=infty
$$ by the assumption that $lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty$. This proves the converse claim.
$endgroup$
add a comment |
$begingroup$
$(Longrightarrow)$ Note that by triangle inequality, we have
$$
2|x_n|=|(x_n+y_n)+(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|
$$ and
$$
2|y_n|=|(x_n+y_n)-(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|.
$$ By taking $ntoinfty$, we get
$$
lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty.
$$ Also note that
$
|x_n+y_n|ge |x_n-y_n|
$ holds eventually. Hence, by squaring both sides, we have
$x_ny_nge 0$. It follows that $lim_{ntoinfty}x_n y_n=lim_{ntoinfty}|x_n| |y_n|=infty.$
$(Longleftarrow)$ To show the converse, note that $lim_{ntoinfty}x_n y_n=infty$ implies that $$
|x_n+y_n|-|x_n-y_n|ge 0
$$ eventually. And since it is a positive sequence, we have
$$
lim_{ntoinfty}|x_n+y_n|-|x_n-y_n|=infty Longleftrightarrow lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2=infty.
$$ Now, we have
$$
left[|x_n+y_n|-|x_n-y_n|right]^2= 2(|x_n|^2+|y_n|^2) -2|x_n^2-y_n^2|=:L.
$$ Observe that if $x_n^2ge y_n^2$, then it holds $L=4|y_n|^2$ and otherwise, $L=4|x_n|^2$. This gives $L=4 min{|x_n|^2,|y_n|^2}$ and
$$
lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2= 4lim_{ntoinfty}min{|x_n|^2,|y_n|^2}=infty
$$ by the assumption that $lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty$. This proves the converse claim.
$endgroup$
$(Longrightarrow)$ Note that by triangle inequality, we have
$$
2|x_n|=|(x_n+y_n)+(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|
$$ and
$$
2|y_n|=|(x_n+y_n)-(x_n-y_n)|ge|x_n+y_n|-|x_n-y_n|.
$$ By taking $ntoinfty$, we get
$$
lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty.
$$ Also note that
$
|x_n+y_n|ge |x_n-y_n|
$ holds eventually. Hence, by squaring both sides, we have
$x_ny_nge 0$. It follows that $lim_{ntoinfty}x_n y_n=lim_{ntoinfty}|x_n| |y_n|=infty.$
$(Longleftarrow)$ To show the converse, note that $lim_{ntoinfty}x_n y_n=infty$ implies that $$
|x_n+y_n|-|x_n-y_n|ge 0
$$ eventually. And since it is a positive sequence, we have
$$
lim_{ntoinfty}|x_n+y_n|-|x_n-y_n|=infty Longleftrightarrow lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2=infty.
$$ Now, we have
$$
left[|x_n+y_n|-|x_n-y_n|right]^2= 2(|x_n|^2+|y_n|^2) -2|x_n^2-y_n^2|=:L.
$$ Observe that if $x_n^2ge y_n^2$, then it holds $L=4|y_n|^2$ and otherwise, $L=4|x_n|^2$. This gives $L=4 min{|x_n|^2,|y_n|^2}$ and
$$
lim_{ntoinfty}left[|x_n+y_n|-|x_n-y_n|right]^2= 4lim_{ntoinfty}min{|x_n|^2,|y_n|^2}=infty
$$ by the assumption that $lim_{ntoinfty}|x_n|=lim_{ntoinfty}|y_n|=infty$. This proves the converse claim.
edited Jan 17 at 21:50
answered Jan 17 at 18:33
SongSong
12.4k631
12.4k631
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077296%2fprove-lim-n-to-inftyx-n-y-n-x-n-y-n-infty-iff-lim-n-to-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3NTYz T a2PVSJfTdbLlYPovKKdDw Bus1xz,LNYdKU7Upp55hAx8YiO,ek1C25K E 3 h t6pd