Prove Lebesgue integrability for an (almost) trigonometric function

Multi tool use
$begingroup$
Let $X = [0,1]$, $mathfrak{M}$ - is a $sigma$ algebra of Lebesgue measurable subsets of $X$, $mu$ - Lebesgue measure on $mathfrak{M}$ Function $f:Xtomathbb{R} $ is defined as: $f(x) = sin{nx}$ if $x in (frac{1}{2^n},frac{1}{2^{n-1}}], n in mathbb{N}, f(0) = 0$
Prove that $f$ is Lebesgue integrable and calculate $intlimits_{X}fdmu$
As far as I understand, we could use the Lebesgue dominated convergence theorem in this case showing that $sin{nx}$ converges pointwise on each interval and is bounded by a constant. Is that correct?
As for integration, using the sigma-additive property of the integral, we can express the integral this way:
$intlimits_{X}fdmu = sumlimits_{n=1}^{infty}intlimits_{A_n}fdmu, n in mathbb{N}$
Unfortunately, I don't exactly understand how to calculate this integral.
measure-theory lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Let $X = [0,1]$, $mathfrak{M}$ - is a $sigma$ algebra of Lebesgue measurable subsets of $X$, $mu$ - Lebesgue measure on $mathfrak{M}$ Function $f:Xtomathbb{R} $ is defined as: $f(x) = sin{nx}$ if $x in (frac{1}{2^n},frac{1}{2^{n-1}}], n in mathbb{N}, f(0) = 0$
Prove that $f$ is Lebesgue integrable and calculate $intlimits_{X}fdmu$
As far as I understand, we could use the Lebesgue dominated convergence theorem in this case showing that $sin{nx}$ converges pointwise on each interval and is bounded by a constant. Is that correct?
As for integration, using the sigma-additive property of the integral, we can express the integral this way:
$intlimits_{X}fdmu = sumlimits_{n=1}^{infty}intlimits_{A_n}fdmu, n in mathbb{N}$
Unfortunately, I don't exactly understand how to calculate this integral.
measure-theory lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Let $X = [0,1]$, $mathfrak{M}$ - is a $sigma$ algebra of Lebesgue measurable subsets of $X$, $mu$ - Lebesgue measure on $mathfrak{M}$ Function $f:Xtomathbb{R} $ is defined as: $f(x) = sin{nx}$ if $x in (frac{1}{2^n},frac{1}{2^{n-1}}], n in mathbb{N}, f(0) = 0$
Prove that $f$ is Lebesgue integrable and calculate $intlimits_{X}fdmu$
As far as I understand, we could use the Lebesgue dominated convergence theorem in this case showing that $sin{nx}$ converges pointwise on each interval and is bounded by a constant. Is that correct?
As for integration, using the sigma-additive property of the integral, we can express the integral this way:
$intlimits_{X}fdmu = sumlimits_{n=1}^{infty}intlimits_{A_n}fdmu, n in mathbb{N}$
Unfortunately, I don't exactly understand how to calculate this integral.
measure-theory lebesgue-integral lebesgue-measure
$endgroup$
Let $X = [0,1]$, $mathfrak{M}$ - is a $sigma$ algebra of Lebesgue measurable subsets of $X$, $mu$ - Lebesgue measure on $mathfrak{M}$ Function $f:Xtomathbb{R} $ is defined as: $f(x) = sin{nx}$ if $x in (frac{1}{2^n},frac{1}{2^{n-1}}], n in mathbb{N}, f(0) = 0$
Prove that $f$ is Lebesgue integrable and calculate $intlimits_{X}fdmu$
As far as I understand, we could use the Lebesgue dominated convergence theorem in this case showing that $sin{nx}$ converges pointwise on each interval and is bounded by a constant. Is that correct?
As for integration, using the sigma-additive property of the integral, we can express the integral this way:
$intlimits_{X}fdmu = sumlimits_{n=1}^{infty}intlimits_{A_n}fdmu, n in mathbb{N}$
Unfortunately, I don't exactly understand how to calculate this integral.
measure-theory lebesgue-integral lebesgue-measure
measure-theory lebesgue-integral lebesgue-measure
edited Jan 18 at 2:47
Don Draper
asked Jan 17 at 17:42
Don DraperDon Draper
539
539
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The sequence
$$f_n(x) = sum_{k=1}^n sin kx , mathbf{1}_{left(2^{-k},2^{-k+1} right]}(x)$$
converges pointwise to $f(x)$ on $[0,1]$.
Since $0 < sin kx < 1$ for $x in left(2^{-k},2^{-k+1} right]$ we have $|f_n(x)| leqslant 1$ for all $x in [0,1]$. By the LDCT, $f$ is integrable and
$$int_{[0,1]} f , dmu= lim_{nto infty}int_{[0,1]} f_n , dmu = lim_{nto infty}sum_{k=1}^n int_{(2^{-k},2^{-k+1}]} sin kx , dmu \ = sum_{k=1}^infty int_{(2^{-k},2^{-k+1}]} sin kx , dmu $$
The integrals on the right-hand side can be evaluated as Riemann integrals (since Riemann integrable functions are Lebesgue integrable) and, thus,
$$int_{[0,1]} f , dmu = sum_{k=1}^infty int_{2^{-k}}^{2^{-k+1}} sin kx , dx \ = sum_{k=1}^infty frac{cos frac{k}{2^{k}} - cos frac{k}{2^{k-1}}}{k} \ underbrace{approx 0.605359}_{text{WolframAlpha}}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077278%2fprove-lebesgue-integrability-for-an-almost-trigonometric-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The sequence
$$f_n(x) = sum_{k=1}^n sin kx , mathbf{1}_{left(2^{-k},2^{-k+1} right]}(x)$$
converges pointwise to $f(x)$ on $[0,1]$.
Since $0 < sin kx < 1$ for $x in left(2^{-k},2^{-k+1} right]$ we have $|f_n(x)| leqslant 1$ for all $x in [0,1]$. By the LDCT, $f$ is integrable and
$$int_{[0,1]} f , dmu= lim_{nto infty}int_{[0,1]} f_n , dmu = lim_{nto infty}sum_{k=1}^n int_{(2^{-k},2^{-k+1}]} sin kx , dmu \ = sum_{k=1}^infty int_{(2^{-k},2^{-k+1}]} sin kx , dmu $$
The integrals on the right-hand side can be evaluated as Riemann integrals (since Riemann integrable functions are Lebesgue integrable) and, thus,
$$int_{[0,1]} f , dmu = sum_{k=1}^infty int_{2^{-k}}^{2^{-k+1}} sin kx , dx \ = sum_{k=1}^infty frac{cos frac{k}{2^{k}} - cos frac{k}{2^{k-1}}}{k} \ underbrace{approx 0.605359}_{text{WolframAlpha}}$$
$endgroup$
add a comment |
$begingroup$
The sequence
$$f_n(x) = sum_{k=1}^n sin kx , mathbf{1}_{left(2^{-k},2^{-k+1} right]}(x)$$
converges pointwise to $f(x)$ on $[0,1]$.
Since $0 < sin kx < 1$ for $x in left(2^{-k},2^{-k+1} right]$ we have $|f_n(x)| leqslant 1$ for all $x in [0,1]$. By the LDCT, $f$ is integrable and
$$int_{[0,1]} f , dmu= lim_{nto infty}int_{[0,1]} f_n , dmu = lim_{nto infty}sum_{k=1}^n int_{(2^{-k},2^{-k+1}]} sin kx , dmu \ = sum_{k=1}^infty int_{(2^{-k},2^{-k+1}]} sin kx , dmu $$
The integrals on the right-hand side can be evaluated as Riemann integrals (since Riemann integrable functions are Lebesgue integrable) and, thus,
$$int_{[0,1]} f , dmu = sum_{k=1}^infty int_{2^{-k}}^{2^{-k+1}} sin kx , dx \ = sum_{k=1}^infty frac{cos frac{k}{2^{k}} - cos frac{k}{2^{k-1}}}{k} \ underbrace{approx 0.605359}_{text{WolframAlpha}}$$
$endgroup$
add a comment |
$begingroup$
The sequence
$$f_n(x) = sum_{k=1}^n sin kx , mathbf{1}_{left(2^{-k},2^{-k+1} right]}(x)$$
converges pointwise to $f(x)$ on $[0,1]$.
Since $0 < sin kx < 1$ for $x in left(2^{-k},2^{-k+1} right]$ we have $|f_n(x)| leqslant 1$ for all $x in [0,1]$. By the LDCT, $f$ is integrable and
$$int_{[0,1]} f , dmu= lim_{nto infty}int_{[0,1]} f_n , dmu = lim_{nto infty}sum_{k=1}^n int_{(2^{-k},2^{-k+1}]} sin kx , dmu \ = sum_{k=1}^infty int_{(2^{-k},2^{-k+1}]} sin kx , dmu $$
The integrals on the right-hand side can be evaluated as Riemann integrals (since Riemann integrable functions are Lebesgue integrable) and, thus,
$$int_{[0,1]} f , dmu = sum_{k=1}^infty int_{2^{-k}}^{2^{-k+1}} sin kx , dx \ = sum_{k=1}^infty frac{cos frac{k}{2^{k}} - cos frac{k}{2^{k-1}}}{k} \ underbrace{approx 0.605359}_{text{WolframAlpha}}$$
$endgroup$
The sequence
$$f_n(x) = sum_{k=1}^n sin kx , mathbf{1}_{left(2^{-k},2^{-k+1} right]}(x)$$
converges pointwise to $f(x)$ on $[0,1]$.
Since $0 < sin kx < 1$ for $x in left(2^{-k},2^{-k+1} right]$ we have $|f_n(x)| leqslant 1$ for all $x in [0,1]$. By the LDCT, $f$ is integrable and
$$int_{[0,1]} f , dmu= lim_{nto infty}int_{[0,1]} f_n , dmu = lim_{nto infty}sum_{k=1}^n int_{(2^{-k},2^{-k+1}]} sin kx , dmu \ = sum_{k=1}^infty int_{(2^{-k},2^{-k+1}]} sin kx , dmu $$
The integrals on the right-hand side can be evaluated as Riemann integrals (since Riemann integrable functions are Lebesgue integrable) and, thus,
$$int_{[0,1]} f , dmu = sum_{k=1}^infty int_{2^{-k}}^{2^{-k+1}} sin kx , dx \ = sum_{k=1}^infty frac{cos frac{k}{2^{k}} - cos frac{k}{2^{k-1}}}{k} \ underbrace{approx 0.605359}_{text{WolframAlpha}}$$
answered Jan 18 at 5:50
RRLRRL
51k42573
51k42573
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077278%2fprove-lebesgue-integrability-for-an-almost-trigonometric-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
9ubj0hkO