Solving the indefinite integral $int frac{1}{x^2+x+1} dx$












0












$begingroup$


I want to solve the following indefinite integral:
(1) $$int frac{1}{x^2+x+1} dx$$
completing the square:
(2) $$=int frac{1}{(x+frac{1}{2})^2+frac{3}{4}} dx$$
Substitution:
(3) $$u=frac{2x+1}{sqrt 3}$$ brings:
(4) $$dx=frac{sqrt 3}{2} du$$
(5) $$= frac{2}{sqrt 3}int frac{1}{u^2+1} du$$
Then getting standard integral
(6) $$= arctan(u)$$
and solving the integral and substitute back is not the problem. But I have a problem understanding the substitution in step (3). I don't know where the $sqrt 3$ beneath the fraction line comes from and how the formula ends in the standard integral in (5) on the right side. Could someone explain these steps in a bit more detail?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
    $endgroup$
    – Antinous
    Jan 5 '18 at 9:17


















0












$begingroup$


I want to solve the following indefinite integral:
(1) $$int frac{1}{x^2+x+1} dx$$
completing the square:
(2) $$=int frac{1}{(x+frac{1}{2})^2+frac{3}{4}} dx$$
Substitution:
(3) $$u=frac{2x+1}{sqrt 3}$$ brings:
(4) $$dx=frac{sqrt 3}{2} du$$
(5) $$= frac{2}{sqrt 3}int frac{1}{u^2+1} du$$
Then getting standard integral
(6) $$= arctan(u)$$
and solving the integral and substitute back is not the problem. But I have a problem understanding the substitution in step (3). I don't know where the $sqrt 3$ beneath the fraction line comes from and how the formula ends in the standard integral in (5) on the right side. Could someone explain these steps in a bit more detail?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
    $endgroup$
    – Antinous
    Jan 5 '18 at 9:17
















0












0








0





$begingroup$


I want to solve the following indefinite integral:
(1) $$int frac{1}{x^2+x+1} dx$$
completing the square:
(2) $$=int frac{1}{(x+frac{1}{2})^2+frac{3}{4}} dx$$
Substitution:
(3) $$u=frac{2x+1}{sqrt 3}$$ brings:
(4) $$dx=frac{sqrt 3}{2} du$$
(5) $$= frac{2}{sqrt 3}int frac{1}{u^2+1} du$$
Then getting standard integral
(6) $$= arctan(u)$$
and solving the integral and substitute back is not the problem. But I have a problem understanding the substitution in step (3). I don't know where the $sqrt 3$ beneath the fraction line comes from and how the formula ends in the standard integral in (5) on the right side. Could someone explain these steps in a bit more detail?










share|cite|improve this question











$endgroup$




I want to solve the following indefinite integral:
(1) $$int frac{1}{x^2+x+1} dx$$
completing the square:
(2) $$=int frac{1}{(x+frac{1}{2})^2+frac{3}{4}} dx$$
Substitution:
(3) $$u=frac{2x+1}{sqrt 3}$$ brings:
(4) $$dx=frac{sqrt 3}{2} du$$
(5) $$= frac{2}{sqrt 3}int frac{1}{u^2+1} du$$
Then getting standard integral
(6) $$= arctan(u)$$
and solving the integral and substitute back is not the problem. But I have a problem understanding the substitution in step (3). I don't know where the $sqrt 3$ beneath the fraction line comes from and how the formula ends in the standard integral in (5) on the right side. Could someone explain these steps in a bit more detail?







real-analysis integration indefinite-integrals fractions substitution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 5 '18 at 9:31









Michael Rozenberg

105k1892198




105k1892198










asked Jan 5 '18 at 9:13









MBDMBD

323




323












  • $begingroup$
    Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
    $endgroup$
    – Antinous
    Jan 5 '18 at 9:17




















  • $begingroup$
    Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
    $endgroup$
    – Antinous
    Jan 5 '18 at 9:17


















$begingroup$
Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
$endgroup$
– Antinous
Jan 5 '18 at 9:17






$begingroup$
Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
$endgroup$
– Antinous
Jan 5 '18 at 9:17












2 Answers
2






active

oldest

votes


















2












$begingroup$

$$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
$$dx=frac{sqrt3}{2}du.$$
Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    We may take a more general approach here. Consider the integral
    $$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
    Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
    $$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
    $$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
    $$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
    Plug in $a=b=c=1$ to get your integral






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2592789%2fsolving-the-indefinite-integral-int-frac1x2x1-dx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      $$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
      Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
      $$dx=frac{sqrt3}{2}du.$$
      Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        $$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
        Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
        $$dx=frac{sqrt3}{2}du.$$
        Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          $$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
          Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
          $$dx=frac{sqrt3}{2}du.$$
          Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$






          share|cite|improve this answer











          $endgroup$



          $$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
          Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
          $$dx=frac{sqrt3}{2}du.$$
          Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 5 '18 at 9:23

























          answered Jan 5 '18 at 9:16









          Michael RozenbergMichael Rozenberg

          105k1892198




          105k1892198























              0












              $begingroup$

              We may take a more general approach here. Consider the integral
              $$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
              Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
              $$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
              $$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
              $$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
              Plug in $a=b=c=1$ to get your integral






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                We may take a more general approach here. Consider the integral
                $$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
                Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
                $$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
                $$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
                $$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
                Plug in $a=b=c=1$ to get your integral






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  We may take a more general approach here. Consider the integral
                  $$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
                  Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
                  $$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
                  $$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
                  $$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
                  Plug in $a=b=c=1$ to get your integral






                  share|cite|improve this answer









                  $endgroup$



                  We may take a more general approach here. Consider the integral
                  $$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
                  Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
                  $$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
                  $$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
                  $$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
                  Plug in $a=b=c=1$ to get your integral







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 22 at 4:39









                  clathratusclathratus

                  4,725337




                  4,725337






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2592789%2fsolving-the-indefinite-integral-int-frac1x2x1-dx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Mario Kart Wii

                      What does “Dominus providebit” mean?

                      Antonio Litta Visconti Arese