How to prove a relation between the evolution operators in the Schrödinger and interaction pictures of...

Multi tool use
$begingroup$
Consider a Hamiltonian $H$ of two components, a time-independent $H_0$ and a time-dependent $V(t)$,
$$H(t)=H_0+V(t),.$$
In the Schrödinger picture of quantum mechanics, the state $left|psi(t)rightrangle_{mathrm{S}}$ evolves according to:
$$mathrm{i}hbarfrac{partial}{partial t}left|psi(t)rightrangle_{mathrm{S}}=H(t)left|psi(t)rightrangle_{mathrm{S}},.$$
This equation admits a formal solution given by,
$$left|psi(t)rightrangle_{mathrm{S}}=U(t,t_0)left|psi(t_0)rightrangle_{mathrm{S}},.$$
$U(t,t_0)$ is the evolution operator corresponding to $H(t)$, defined by
$$U(t,t_0)=mathcal{T}expleft(-frac{mathrm{i}}{hbar}intlimits_{t_0}^{t}mathrm{d}t'H(t')right),,$$
where $mathcal{T}$ is the time-ordering operator.
One define the states and operators in the interaction picture as
$$left|psi(t)rightrangle_{mathrm{I}}=expleft(frac{mathrm{i}}{hbar}H_{0}tright)left|psi(t)rightrangle_{mathrm{S}},,$$
$$A_{mathrm{I}}(t)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)A_{mathrm{S}}(t)expleft(-frac{mathrm{i}}{hbar}H_{0}tright),.$$
$A_{mathrm{S}}(t)$ is the operator in the Schrödinger picture, such as $V(t)$, which in general could depend on time.
One could prove that
$$mathrm{i}hbarfrac{partial}{partial t}left|psi(t)rightrangle_{mathrm{I}}=V_{mathrm{I}}(t)left|psi(t)rightrangle_{mathrm{I}},.$$
This resolves into
$$left|psi(t)rightrangle_{mathrm{I}}=U'(t,t_0)left|psi(t_0)rightrangle_{mathrm{I}},,$$
where
$$U'(t,t_0)=mathcal{T}expleft(-frac{mathrm{i}}{hbar}intlimits_{t_0}^{t}mathrm{d}t'V_{mathrm{I}}(t')right),.$$
I know that $U$ and $U'$ are related to each other by
$$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
This can be proved by a differentiation procedure (and essentially this is how the interaction picture is derived from the Schrödinger one). But how can one prove this based on the expansion in Neumann's series of the evolution operators only?
mathematical-physics
$endgroup$
add a comment |
$begingroup$
Consider a Hamiltonian $H$ of two components, a time-independent $H_0$ and a time-dependent $V(t)$,
$$H(t)=H_0+V(t),.$$
In the Schrödinger picture of quantum mechanics, the state $left|psi(t)rightrangle_{mathrm{S}}$ evolves according to:
$$mathrm{i}hbarfrac{partial}{partial t}left|psi(t)rightrangle_{mathrm{S}}=H(t)left|psi(t)rightrangle_{mathrm{S}},.$$
This equation admits a formal solution given by,
$$left|psi(t)rightrangle_{mathrm{S}}=U(t,t_0)left|psi(t_0)rightrangle_{mathrm{S}},.$$
$U(t,t_0)$ is the evolution operator corresponding to $H(t)$, defined by
$$U(t,t_0)=mathcal{T}expleft(-frac{mathrm{i}}{hbar}intlimits_{t_0}^{t}mathrm{d}t'H(t')right),,$$
where $mathcal{T}$ is the time-ordering operator.
One define the states and operators in the interaction picture as
$$left|psi(t)rightrangle_{mathrm{I}}=expleft(frac{mathrm{i}}{hbar}H_{0}tright)left|psi(t)rightrangle_{mathrm{S}},,$$
$$A_{mathrm{I}}(t)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)A_{mathrm{S}}(t)expleft(-frac{mathrm{i}}{hbar}H_{0}tright),.$$
$A_{mathrm{S}}(t)$ is the operator in the Schrödinger picture, such as $V(t)$, which in general could depend on time.
One could prove that
$$mathrm{i}hbarfrac{partial}{partial t}left|psi(t)rightrangle_{mathrm{I}}=V_{mathrm{I}}(t)left|psi(t)rightrangle_{mathrm{I}},.$$
This resolves into
$$left|psi(t)rightrangle_{mathrm{I}}=U'(t,t_0)left|psi(t_0)rightrangle_{mathrm{I}},,$$
where
$$U'(t,t_0)=mathcal{T}expleft(-frac{mathrm{i}}{hbar}intlimits_{t_0}^{t}mathrm{d}t'V_{mathrm{I}}(t')right),.$$
I know that $U$ and $U'$ are related to each other by
$$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
This can be proved by a differentiation procedure (and essentially this is how the interaction picture is derived from the Schrödinger one). But how can one prove this based on the expansion in Neumann's series of the evolution operators only?
mathematical-physics
$endgroup$
add a comment |
$begingroup$
Consider a Hamiltonian $H$ of two components, a time-independent $H_0$ and a time-dependent $V(t)$,
$$H(t)=H_0+V(t),.$$
In the Schrödinger picture of quantum mechanics, the state $left|psi(t)rightrangle_{mathrm{S}}$ evolves according to:
$$mathrm{i}hbarfrac{partial}{partial t}left|psi(t)rightrangle_{mathrm{S}}=H(t)left|psi(t)rightrangle_{mathrm{S}},.$$
This equation admits a formal solution given by,
$$left|psi(t)rightrangle_{mathrm{S}}=U(t,t_0)left|psi(t_0)rightrangle_{mathrm{S}},.$$
$U(t,t_0)$ is the evolution operator corresponding to $H(t)$, defined by
$$U(t,t_0)=mathcal{T}expleft(-frac{mathrm{i}}{hbar}intlimits_{t_0}^{t}mathrm{d}t'H(t')right),,$$
where $mathcal{T}$ is the time-ordering operator.
One define the states and operators in the interaction picture as
$$left|psi(t)rightrangle_{mathrm{I}}=expleft(frac{mathrm{i}}{hbar}H_{0}tright)left|psi(t)rightrangle_{mathrm{S}},,$$
$$A_{mathrm{I}}(t)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)A_{mathrm{S}}(t)expleft(-frac{mathrm{i}}{hbar}H_{0}tright),.$$
$A_{mathrm{S}}(t)$ is the operator in the Schrödinger picture, such as $V(t)$, which in general could depend on time.
One could prove that
$$mathrm{i}hbarfrac{partial}{partial t}left|psi(t)rightrangle_{mathrm{I}}=V_{mathrm{I}}(t)left|psi(t)rightrangle_{mathrm{I}},.$$
This resolves into
$$left|psi(t)rightrangle_{mathrm{I}}=U'(t,t_0)left|psi(t_0)rightrangle_{mathrm{I}},,$$
where
$$U'(t,t_0)=mathcal{T}expleft(-frac{mathrm{i}}{hbar}intlimits_{t_0}^{t}mathrm{d}t'V_{mathrm{I}}(t')right),.$$
I know that $U$ and $U'$ are related to each other by
$$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
This can be proved by a differentiation procedure (and essentially this is how the interaction picture is derived from the Schrödinger one). But how can one prove this based on the expansion in Neumann's series of the evolution operators only?
mathematical-physics
$endgroup$
Consider a Hamiltonian $H$ of two components, a time-independent $H_0$ and a time-dependent $V(t)$,
$$H(t)=H_0+V(t),.$$
In the Schrödinger picture of quantum mechanics, the state $left|psi(t)rightrangle_{mathrm{S}}$ evolves according to:
$$mathrm{i}hbarfrac{partial}{partial t}left|psi(t)rightrangle_{mathrm{S}}=H(t)left|psi(t)rightrangle_{mathrm{S}},.$$
This equation admits a formal solution given by,
$$left|psi(t)rightrangle_{mathrm{S}}=U(t,t_0)left|psi(t_0)rightrangle_{mathrm{S}},.$$
$U(t,t_0)$ is the evolution operator corresponding to $H(t)$, defined by
$$U(t,t_0)=mathcal{T}expleft(-frac{mathrm{i}}{hbar}intlimits_{t_0}^{t}mathrm{d}t'H(t')right),,$$
where $mathcal{T}$ is the time-ordering operator.
One define the states and operators in the interaction picture as
$$left|psi(t)rightrangle_{mathrm{I}}=expleft(frac{mathrm{i}}{hbar}H_{0}tright)left|psi(t)rightrangle_{mathrm{S}},,$$
$$A_{mathrm{I}}(t)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)A_{mathrm{S}}(t)expleft(-frac{mathrm{i}}{hbar}H_{0}tright),.$$
$A_{mathrm{S}}(t)$ is the operator in the Schrödinger picture, such as $V(t)$, which in general could depend on time.
One could prove that
$$mathrm{i}hbarfrac{partial}{partial t}left|psi(t)rightrangle_{mathrm{I}}=V_{mathrm{I}}(t)left|psi(t)rightrangle_{mathrm{I}},.$$
This resolves into
$$left|psi(t)rightrangle_{mathrm{I}}=U'(t,t_0)left|psi(t_0)rightrangle_{mathrm{I}},,$$
where
$$U'(t,t_0)=mathcal{T}expleft(-frac{mathrm{i}}{hbar}intlimits_{t_0}^{t}mathrm{d}t'V_{mathrm{I}}(t')right),.$$
I know that $U$ and $U'$ are related to each other by
$$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
This can be proved by a differentiation procedure (and essentially this is how the interaction picture is derived from the Schrödinger one). But how can one prove this based on the expansion in Neumann's series of the evolution operators only?
mathematical-physics
mathematical-physics
asked Jan 22 at 9:22
Willi TschauWilli Tschau
486
486
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It is not correct that $$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$ You can simply see this when setting $Vequiv 0$. We then have that
$$ U(t,t_0) = expleft[-i (t-t_0) H_0right]$$
while $$U'(t,t_0)= 1 neqexpleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
$endgroup$
$begingroup$
Respectfully disagree (I wanted to say Holy Cow!). In the case you considered, couldn't you just split $U(t,t_0)$ into $exp(-frac{mathrm{i}}{hbar}H_0t)timesexp(frac{mathrm{i}}{hbar}H_0t_0)$. $H_0$ commutes with itself!
$endgroup$
– Willi Tschau
Jan 22 at 15:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082919%2fhow-to-prove-a-relation-between-the-evolution-operators-in-the-schr%25c3%25b6dinger-and-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is not correct that $$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$ You can simply see this when setting $Vequiv 0$. We then have that
$$ U(t,t_0) = expleft[-i (t-t_0) H_0right]$$
while $$U'(t,t_0)= 1 neqexpleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
$endgroup$
$begingroup$
Respectfully disagree (I wanted to say Holy Cow!). In the case you considered, couldn't you just split $U(t,t_0)$ into $exp(-frac{mathrm{i}}{hbar}H_0t)timesexp(frac{mathrm{i}}{hbar}H_0t_0)$. $H_0$ commutes with itself!
$endgroup$
– Willi Tschau
Jan 22 at 15:51
add a comment |
$begingroup$
It is not correct that $$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$ You can simply see this when setting $Vequiv 0$. We then have that
$$ U(t,t_0) = expleft[-i (t-t_0) H_0right]$$
while $$U'(t,t_0)= 1 neqexpleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
$endgroup$
$begingroup$
Respectfully disagree (I wanted to say Holy Cow!). In the case you considered, couldn't you just split $U(t,t_0)$ into $exp(-frac{mathrm{i}}{hbar}H_0t)timesexp(frac{mathrm{i}}{hbar}H_0t_0)$. $H_0$ commutes with itself!
$endgroup$
– Willi Tschau
Jan 22 at 15:51
add a comment |
$begingroup$
It is not correct that $$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$ You can simply see this when setting $Vequiv 0$. We then have that
$$ U(t,t_0) = expleft[-i (t-t_0) H_0right]$$
while $$U'(t,t_0)= 1 neqexpleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
$endgroup$
It is not correct that $$U'(t,t_0)=expleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$ You can simply see this when setting $Vequiv 0$. We then have that
$$ U(t,t_0) = expleft[-i (t-t_0) H_0right]$$
while $$U'(t,t_0)= 1 neqexpleft(frac{mathrm{i}}{hbar}H_{0}tright)U(t,t_0)expleft(-frac{mathrm{i}}{hbar}H_{0}t_0right),.$$
answered Jan 22 at 10:59
FabianFabian
19.8k3774
19.8k3774
$begingroup$
Respectfully disagree (I wanted to say Holy Cow!). In the case you considered, couldn't you just split $U(t,t_0)$ into $exp(-frac{mathrm{i}}{hbar}H_0t)timesexp(frac{mathrm{i}}{hbar}H_0t_0)$. $H_0$ commutes with itself!
$endgroup$
– Willi Tschau
Jan 22 at 15:51
add a comment |
$begingroup$
Respectfully disagree (I wanted to say Holy Cow!). In the case you considered, couldn't you just split $U(t,t_0)$ into $exp(-frac{mathrm{i}}{hbar}H_0t)timesexp(frac{mathrm{i}}{hbar}H_0t_0)$. $H_0$ commutes with itself!
$endgroup$
– Willi Tschau
Jan 22 at 15:51
$begingroup$
Respectfully disagree (I wanted to say Holy Cow!). In the case you considered, couldn't you just split $U(t,t_0)$ into $exp(-frac{mathrm{i}}{hbar}H_0t)timesexp(frac{mathrm{i}}{hbar}H_0t_0)$. $H_0$ commutes with itself!
$endgroup$
– Willi Tschau
Jan 22 at 15:51
$begingroup$
Respectfully disagree (I wanted to say Holy Cow!). In the case you considered, couldn't you just split $U(t,t_0)$ into $exp(-frac{mathrm{i}}{hbar}H_0t)timesexp(frac{mathrm{i}}{hbar}H_0t_0)$. $H_0$ commutes with itself!
$endgroup$
– Willi Tschau
Jan 22 at 15:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082919%2fhow-to-prove-a-relation-between-the-evolution-operators-in-the-schr%25c3%25b6dinger-and-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
IODUPcm24 X4r0h57hw9o,2WX0kpU1aqHj87rMiOGxe,HfgO4YXYOtksNM 82ec