differential equations in the normal form.

Multi tool use
Content: Reducing them to various first order differential equations in the normal form.
begin{cases} x' +x - y' = -t \ x' + y' + y = 1 end{cases}
differential-equations systems-of-equations
add a comment |
Content: Reducing them to various first order differential equations in the normal form.
begin{cases} x' +x - y' = -t \ x' + y' + y = 1 end{cases}
differential-equations systems-of-equations
add a comment |
Content: Reducing them to various first order differential equations in the normal form.
begin{cases} x' +x - y' = -t \ x' + y' + y = 1 end{cases}
differential-equations systems-of-equations
Content: Reducing them to various first order differential equations in the normal form.
begin{cases} x' +x - y' = -t \ x' + y' + y = 1 end{cases}
differential-equations systems-of-equations
differential-equations systems-of-equations
asked yesterday
Svs
41
41
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
My solution is this right? could anyone improve this for me?
$$ x = -t + y' - x'$$
$$ y = 1 - y' - x'$$
$$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,
$$ V = A cdot V'$$
$$ V' = A^{-1} cdot V - b $$
$$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$
$$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$
$$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$
$$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$
$$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$
$$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$
$$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$
$$begin{cases} x = 1 \ y = 1 end{cases}$$
$$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$
$$begin{cases} a = 1 \ b = -3 end{cases}$$
$$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$
$$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ V' = beta V $$
$$frac{dV}{V} = beta dt $$
$$ ln{|V|} = beta t + C $$
$$ |V| = e^{beta t} e^{C}$$
$$ V pm e^{C} e^{beta t}$$
$$ V_{h} = ke^{beta t} $$
$$ V = V_{h} + V_{p}$$
$$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$
$$k in Re$$
From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
– Moo
yesterday
Could you resolved this way my tasks?
– Svs
11 hours ago
I am confused, two other answers show the normal form and I show a solution. What are you asking for?
– Moo
10 hours ago
What do you mean how from your solutions find $y(t)$ ?
– Svs
7 hours ago
You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
– Moo
7 hours ago
add a comment |
The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
begin{equation}
boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
1 & -1\
1 & 1
end{array}
right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
-t\
1
end{array}
right).
end{equation}
Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
begin{equation}
boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
1 & 1\
-1 & 1
end{array}
right).
end{equation}
In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.
Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.
For a hint on the solution see Moo's comment.
New contributor
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
Adding two equations gives
$$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
Using the second equation to subtract the first one gives
$$ y'=frac12x-frac12y+frac12t+frac12. $$
Thus
$$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
frac12&-frac12
end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062364%2fdifferential-equations-in-the-normal-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
My solution is this right? could anyone improve this for me?
$$ x = -t + y' - x'$$
$$ y = 1 - y' - x'$$
$$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,
$$ V = A cdot V'$$
$$ V' = A^{-1} cdot V - b $$
$$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$
$$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$
$$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$
$$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$
$$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$
$$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$
$$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$
$$begin{cases} x = 1 \ y = 1 end{cases}$$
$$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$
$$begin{cases} a = 1 \ b = -3 end{cases}$$
$$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$
$$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ V' = beta V $$
$$frac{dV}{V} = beta dt $$
$$ ln{|V|} = beta t + C $$
$$ |V| = e^{beta t} e^{C}$$
$$ V pm e^{C} e^{beta t}$$
$$ V_{h} = ke^{beta t} $$
$$ V = V_{h} + V_{p}$$
$$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$
$$k in Re$$
From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
– Moo
yesterday
Could you resolved this way my tasks?
– Svs
11 hours ago
I am confused, two other answers show the normal form and I show a solution. What are you asking for?
– Moo
10 hours ago
What do you mean how from your solutions find $y(t)$ ?
– Svs
7 hours ago
You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
– Moo
7 hours ago
add a comment |
My solution is this right? could anyone improve this for me?
$$ x = -t + y' - x'$$
$$ y = 1 - y' - x'$$
$$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,
$$ V = A cdot V'$$
$$ V' = A^{-1} cdot V - b $$
$$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$
$$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$
$$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$
$$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$
$$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$
$$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$
$$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$
$$begin{cases} x = 1 \ y = 1 end{cases}$$
$$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$
$$begin{cases} a = 1 \ b = -3 end{cases}$$
$$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$
$$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ V' = beta V $$
$$frac{dV}{V} = beta dt $$
$$ ln{|V|} = beta t + C $$
$$ |V| = e^{beta t} e^{C}$$
$$ V pm e^{C} e^{beta t}$$
$$ V_{h} = ke^{beta t} $$
$$ V = V_{h} + V_{p}$$
$$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$
$$k in Re$$
From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
– Moo
yesterday
Could you resolved this way my tasks?
– Svs
11 hours ago
I am confused, two other answers show the normal form and I show a solution. What are you asking for?
– Moo
10 hours ago
What do you mean how from your solutions find $y(t)$ ?
– Svs
7 hours ago
You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
– Moo
7 hours ago
add a comment |
My solution is this right? could anyone improve this for me?
$$ x = -t + y' - x'$$
$$ y = 1 - y' - x'$$
$$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,
$$ V = A cdot V'$$
$$ V' = A^{-1} cdot V - b $$
$$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$
$$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$
$$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$
$$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$
$$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$
$$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$
$$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$
$$begin{cases} x = 1 \ y = 1 end{cases}$$
$$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$
$$begin{cases} a = 1 \ b = -3 end{cases}$$
$$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$
$$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ V' = beta V $$
$$frac{dV}{V} = beta dt $$
$$ ln{|V|} = beta t + C $$
$$ |V| = e^{beta t} e^{C}$$
$$ V pm e^{C} e^{beta t}$$
$$ V_{h} = ke^{beta t} $$
$$ V = V_{h} + V_{p}$$
$$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$
$$k in Re$$
My solution is this right? could anyone improve this for me?
$$ x = -t + y' - x'$$
$$ y = 1 - y' - x'$$
$$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,
$$ V = A cdot V'$$
$$ V' = A^{-1} cdot V - b $$
$$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$
$$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$
$$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$
$$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$
$$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$
$$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$
$$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$
$$begin{cases} x = 1 \ y = 1 end{cases}$$
$$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$
$$begin{cases} a = 1 \ b = -3 end{cases}$$
$$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$
$$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$
$$ V' = beta V $$
$$frac{dV}{V} = beta dt $$
$$ ln{|V|} = beta t + C $$
$$ |V| = e^{beta t} e^{C}$$
$$ V pm e^{C} e^{beta t}$$
$$ V_{h} = ke^{beta t} $$
$$ V = V_{h} + V_{p}$$
$$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$
$$k in Re$$
answered yesterday
Svs
41
41
From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
– Moo
yesterday
Could you resolved this way my tasks?
– Svs
11 hours ago
I am confused, two other answers show the normal form and I show a solution. What are you asking for?
– Moo
10 hours ago
What do you mean how from your solutions find $y(t)$ ?
– Svs
7 hours ago
You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
– Moo
7 hours ago
add a comment |
From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
– Moo
yesterday
Could you resolved this way my tasks?
– Svs
11 hours ago
I am confused, two other answers show the normal form and I show a solution. What are you asking for?
– Moo
10 hours ago
What do you mean how from your solutions find $y(t)$ ?
– Svs
7 hours ago
You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
– Moo
7 hours ago
From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
– Moo
yesterday
From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
– Moo
yesterday
Could you resolved this way my tasks?
– Svs
11 hours ago
Could you resolved this way my tasks?
– Svs
11 hours ago
I am confused, two other answers show the normal form and I show a solution. What are you asking for?
– Moo
10 hours ago
I am confused, two other answers show the normal form and I show a solution. What are you asking for?
– Moo
10 hours ago
What do you mean how from your solutions find $y(t)$ ?
– Svs
7 hours ago
What do you mean how from your solutions find $y(t)$ ?
– Svs
7 hours ago
You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
– Moo
7 hours ago
You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
– Moo
7 hours ago
add a comment |
The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
begin{equation}
boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
1 & -1\
1 & 1
end{array}
right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
-t\
1
end{array}
right).
end{equation}
Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
begin{equation}
boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
1 & 1\
-1 & 1
end{array}
right).
end{equation}
In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.
Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.
For a hint on the solution see Moo's comment.
New contributor
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
begin{equation}
boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
1 & -1\
1 & 1
end{array}
right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
-t\
1
end{array}
right).
end{equation}
Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
begin{equation}
boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
1 & 1\
-1 & 1
end{array}
right).
end{equation}
In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.
Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.
For a hint on the solution see Moo's comment.
New contributor
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
begin{equation}
boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
1 & -1\
1 & 1
end{array}
right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
-t\
1
end{array}
right).
end{equation}
Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
begin{equation}
boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
1 & 1\
-1 & 1
end{array}
right).
end{equation}
In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.
Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.
For a hint on the solution see Moo's comment.
New contributor
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
begin{equation}
boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
1 & -1\
1 & 1
end{array}
right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
-t\
1
end{array}
right).
end{equation}
Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
begin{equation}
boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
1 & 1\
-1 & 1
end{array}
right).
end{equation}
In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.
Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.
For a hint on the solution see Moo's comment.
New contributor
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
answered yesterday
Christoph
364
364
New contributor
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
add a comment |
Adding two equations gives
$$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
Using the second equation to subtract the first one gives
$$ y'=frac12x-frac12y+frac12t+frac12. $$
Thus
$$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
frac12&-frac12
end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$
add a comment |
Adding two equations gives
$$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
Using the second equation to subtract the first one gives
$$ y'=frac12x-frac12y+frac12t+frac12. $$
Thus
$$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
frac12&-frac12
end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$
add a comment |
Adding two equations gives
$$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
Using the second equation to subtract the first one gives
$$ y'=frac12x-frac12y+frac12t+frac12. $$
Thus
$$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
frac12&-frac12
end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$
Adding two equations gives
$$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
Using the second equation to subtract the first one gives
$$ y'=frac12x-frac12y+frac12t+frac12. $$
Thus
$$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
frac12&-frac12
end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$
answered yesterday


xpaul
22.4k14455
22.4k14455
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062364%2fdifferential-equations-in-the-normal-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
xw,i 6RTwhrbCfBWOU8gShx9m4xuoidQAwUV,861HPXyP6sOS6cxhuL0p1zEzZfoik2k 8kNnk0kuVKrRBAl,2HN7