differential equations in the normal form.












0














Content: Reducing them to various first order differential equations in the normal form.



begin{cases} x' +x - y' = -t \ x' + y' + y = 1 end{cases}










share|cite|improve this question



























    0














    Content: Reducing them to various first order differential equations in the normal form.



    begin{cases} x' +x - y' = -t \ x' + y' + y = 1 end{cases}










    share|cite|improve this question

























      0












      0








      0


      1





      Content: Reducing them to various first order differential equations in the normal form.



      begin{cases} x' +x - y' = -t \ x' + y' + y = 1 end{cases}










      share|cite|improve this question













      Content: Reducing them to various first order differential equations in the normal form.



      begin{cases} x' +x - y' = -t \ x' + y' + y = 1 end{cases}







      differential-equations systems-of-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      Svs

      41




      41






















          3 Answers
          3






          active

          oldest

          votes


















          0














          My solution is this right? could anyone improve this for me?



          $$ x = -t + y' - x'$$
          $$ y = 1 - y' - x'$$
          $$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,



          $$ V = A cdot V'$$
          $$ V' = A^{-1} cdot V - b $$



          $$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$



          $$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$



          $$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$



          $$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$



          $$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$



          $$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$



          $$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$



          $$begin{cases} x = 1 \ y = 1 end{cases}$$



          $$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$



          $$begin{cases} a = 1 \ b = -3 end{cases}$$



          $$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$



          $$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



          $$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



          $$ V' = beta V $$



          $$frac{dV}{V} = beta dt $$



          $$ ln{|V|} = beta t + C $$
          $$ |V| = e^{beta t} e^{C}$$
          $$ V pm e^{C} e^{beta t}$$
          $$ V_{h} = ke^{beta t} $$



          $$ V = V_{h} + V_{p}$$
          $$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$



          $$k in Re$$






          share|cite|improve this answer





















          • From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
            – Moo
            yesterday












          • Could you resolved this way my tasks?
            – Svs
            11 hours ago












          • I am confused, two other answers show the normal form and I show a solution. What are you asking for?
            – Moo
            10 hours ago










          • What do you mean how from your solutions find $y(t)$ ?
            – Svs
            7 hours ago












          • You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
            – Moo
            7 hours ago





















          0














          The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
          begin{equation}
          boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
          1 & -1\
          1 & 1
          end{array}
          right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
          -t\
          1
          end{array}
          right).
          end{equation}

          Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
          begin{equation}
          boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
          1 & 1\
          -1 & 1
          end{array}
          right).
          end{equation}

          In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.



          Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.



          For a hint on the solution see Moo's comment.






          share|cite|improve this answer








          New contributor




          Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.


























            0














            Adding two equations gives
            $$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
            Using the second equation to subtract the first one gives
            $$ y'=frac12x-frac12y+frac12t+frac12. $$
            Thus
            $$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
            frac12&-frac12
            end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062364%2fdifferential-equations-in-the-normal-form%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0














              My solution is this right? could anyone improve this for me?



              $$ x = -t + y' - x'$$
              $$ y = 1 - y' - x'$$
              $$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,



              $$ V = A cdot V'$$
              $$ V' = A^{-1} cdot V - b $$



              $$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$



              $$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$



              $$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$



              $$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$



              $$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$



              $$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$



              $$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$



              $$begin{cases} x = 1 \ y = 1 end{cases}$$



              $$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$



              $$begin{cases} a = 1 \ b = -3 end{cases}$$



              $$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$



              $$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



              $$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



              $$ V' = beta V $$



              $$frac{dV}{V} = beta dt $$



              $$ ln{|V|} = beta t + C $$
              $$ |V| = e^{beta t} e^{C}$$
              $$ V pm e^{C} e^{beta t}$$
              $$ V_{h} = ke^{beta t} $$



              $$ V = V_{h} + V_{p}$$
              $$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$



              $$k in Re$$






              share|cite|improve this answer





















              • From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
                – Moo
                yesterday












              • Could you resolved this way my tasks?
                – Svs
                11 hours ago












              • I am confused, two other answers show the normal form and I show a solution. What are you asking for?
                – Moo
                10 hours ago










              • What do you mean how from your solutions find $y(t)$ ?
                – Svs
                7 hours ago












              • You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
                – Moo
                7 hours ago


















              0














              My solution is this right? could anyone improve this for me?



              $$ x = -t + y' - x'$$
              $$ y = 1 - y' - x'$$
              $$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,



              $$ V = A cdot V'$$
              $$ V' = A^{-1} cdot V - b $$



              $$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$



              $$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$



              $$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$



              $$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$



              $$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$



              $$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$



              $$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$



              $$begin{cases} x = 1 \ y = 1 end{cases}$$



              $$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$



              $$begin{cases} a = 1 \ b = -3 end{cases}$$



              $$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$



              $$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



              $$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



              $$ V' = beta V $$



              $$frac{dV}{V} = beta dt $$



              $$ ln{|V|} = beta t + C $$
              $$ |V| = e^{beta t} e^{C}$$
              $$ V pm e^{C} e^{beta t}$$
              $$ V_{h} = ke^{beta t} $$



              $$ V = V_{h} + V_{p}$$
              $$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$



              $$k in Re$$






              share|cite|improve this answer





















              • From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
                – Moo
                yesterday












              • Could you resolved this way my tasks?
                – Svs
                11 hours ago












              • I am confused, two other answers show the normal form and I show a solution. What are you asking for?
                – Moo
                10 hours ago










              • What do you mean how from your solutions find $y(t)$ ?
                – Svs
                7 hours ago












              • You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
                – Moo
                7 hours ago
















              0












              0








              0






              My solution is this right? could anyone improve this for me?



              $$ x = -t + y' - x'$$
              $$ y = 1 - y' - x'$$
              $$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,



              $$ V = A cdot V'$$
              $$ V' = A^{-1} cdot V - b $$



              $$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$



              $$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$



              $$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$



              $$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$



              $$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$



              $$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$



              $$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$



              $$begin{cases} x = 1 \ y = 1 end{cases}$$



              $$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$



              $$begin{cases} a = 1 \ b = -3 end{cases}$$



              $$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$



              $$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



              $$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



              $$ V' = beta V $$



              $$frac{dV}{V} = beta dt $$



              $$ ln{|V|} = beta t + C $$
              $$ |V| = e^{beta t} e^{C}$$
              $$ V pm e^{C} e^{beta t}$$
              $$ V_{h} = ke^{beta t} $$



              $$ V = V_{h} + V_{p}$$
              $$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$



              $$k in Re$$






              share|cite|improve this answer












              My solution is this right? could anyone improve this for me?



              $$ x = -t + y' - x'$$
              $$ y = 1 - y' - x'$$
              $$left(begin{array}{c}x\yend{array}right) = left(begin{array}{cc}-1 &1\-1&-1end{array}right)left(begin{array}{c}x'\y'end{array}right) + left(begin{array}{c}-t\1end{array}right)$$,



              $$ V = A cdot V'$$
              $$ V' = A^{-1} cdot V - b $$



              $$left(begin{array}{c}x'\y'end{array}right) = left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right)left(begin{array}{c}x\yend{array}right) + left(begin{array}{c}t\-1end{array}right)$$



              $$V_{p}(t) = left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right)$$



              $$left(begin{array}{c}t\-1end{array}right) = V'_{p}(t) -left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) V_{p}(t)$$



              $$frac{partial Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr] }{partial t} - left(begin{array}{cc}-frac{1}{2} &frac{1}{2}\-frac{1}{2}&-frac{1}{2}end{array}right) Biggr[ left(begin{array}{c}x\yend{array}right)t + left(begin{array}{c}a\bend{array}right) Biggr]$$



              $$left(begin{array}{c}x\yend{array}right) - Biggr[left(begin{array}{cc}-frac{x}{2} - frac{y}{2}\frac{x}{2}-frac{y}{2}end{array}right)t + left(begin{array}{cc}frac{-a}{2} - frac{b}{2}\frac{a}{2}-frac{b}{2}end{array}right) Biggr]$$



              $$left(begin{array}{c}1\0end{array}right)t + left(begin{array}{c}0\-1end{array}right) = left(begin{array}{cc}frac{x}{2} + frac{y}{2}\-frac{x}{2}+frac{y}{2}end{array}right) + left(begin{array}{cc}x+frac{a}{2}+ frac{b}{2}\y-frac{a}{2}+frac{b}{2}end{array}right) $$



              $$begin{cases} frac{x}{2} + frac{y}{2} = 1 \ -frac{x}{2} + frac{y}{2} = 0 end{cases}$$



              $$begin{cases} x = 1 \ y = 1 end{cases}$$



              $$begin{cases} x+frac{a}{2}+ frac{b}{2} = 0 \ y-frac{a}{2}+frac{b}{2} = -1 end{cases}$$



              $$begin{cases} a = 1 \ b = -3 end{cases}$$



              $$V_{p}t = left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)$$



              $$V' = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



              $$ beta = left(begin{array}{cc}-frac{1}{2} &-frac{1}{2}\frac{1}{2}&-frac{1}{2}end{array}right) $$



              $$ V' = beta V $$



              $$frac{dV}{V} = beta dt $$



              $$ ln{|V|} = beta t + C $$
              $$ |V| = e^{beta t} e^{C}$$
              $$ V pm e^{C} e^{beta t}$$
              $$ V_{h} = ke^{beta t} $$



              $$ V = V_{h} + V_{p}$$
              $$ V = ke^{beta t} + Biggr[ left(begin{array}{c}1\1end{array}right)t + left(begin{array}{c}1\-3end{array}right)Biggr]$$



              $$k in Re$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered yesterday









              Svs

              41




              41












              • From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
                – Moo
                yesterday












              • Could you resolved this way my tasks?
                – Svs
                11 hours ago












              • I am confused, two other answers show the normal form and I show a solution. What are you asking for?
                – Moo
                10 hours ago










              • What do you mean how from your solutions find $y(t)$ ?
                – Svs
                7 hours ago












              • You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
                – Moo
                7 hours ago




















              • From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
                – Moo
                yesterday












              • Could you resolved this way my tasks?
                – Svs
                11 hours ago












              • I am confused, two other answers show the normal form and I show a solution. What are you asking for?
                – Moo
                10 hours ago










              • What do you mean how from your solutions find $y(t)$ ?
                – Svs
                7 hours ago












              • You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
                – Moo
                7 hours ago


















              From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
              – Moo
              yesterday






              From the two equations, you get $$2 x'' + 2 x' + x + t+ 1 =0 implies x(t) = c_1 e^{-dfrac{t}{2}} sin left(dfrac{t}{2}right)+c_2 e^{-dfrac{t}{2}} cos left(dfrac{t}{2}right)-t+1.$$ From this, it is easy to find $y(t)$. Compare this to your result.
              – Moo
              yesterday














              Could you resolved this way my tasks?
              – Svs
              11 hours ago






              Could you resolved this way my tasks?
              – Svs
              11 hours ago














              I am confused, two other answers show the normal form and I show a solution. What are you asking for?
              – Moo
              10 hours ago




              I am confused, two other answers show the normal form and I show a solution. What are you asking for?
              – Moo
              10 hours ago












              What do you mean how from your solutions find $y(t)$ ?
              – Svs
              7 hours ago






              What do you mean how from your solutions find $y(t)$ ?
              – Svs
              7 hours ago














              You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
              – Moo
              7 hours ago






              You have $$x' +x - y' = -t$$ From this, solve for $y'$, substitute your $x(t)$ result and derivative and then solve for $y$.
              – Moo
              7 hours ago













              0














              The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
              begin{equation}
              boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
              1 & -1\
              1 & 1
              end{array}
              right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
              -t\
              1
              end{array}
              right).
              end{equation}

              Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
              begin{equation}
              boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
              1 & 1\
              -1 & 1
              end{array}
              right).
              end{equation}

              In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.



              Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.



              For a hint on the solution see Moo's comment.






              share|cite|improve this answer








              New contributor




              Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.























                0














                The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
                begin{equation}
                boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
                1 & -1\
                1 & 1
                end{array}
                right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
                -t\
                1
                end{array}
                right).
                end{equation}

                Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
                begin{equation}
                boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
                1 & 1\
                -1 & 1
                end{array}
                right).
                end{equation}

                In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.



                Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.



                For a hint on the solution see Moo's comment.






                share|cite|improve this answer








                New contributor




                Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.





















                  0












                  0








                  0






                  The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
                  begin{equation}
                  boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
                  1 & -1\
                  1 & 1
                  end{array}
                  right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
                  -t\
                  1
                  end{array}
                  right).
                  end{equation}

                  Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
                  begin{equation}
                  boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
                  1 & 1\
                  -1 & 1
                  end{array}
                  right).
                  end{equation}

                  In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.



                  Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.



                  For a hint on the solution see Moo's comment.






                  share|cite|improve this answer








                  New contributor




                  Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  The normal form of a system of ODEs ist $boldsymbol{x}' = boldsymbol{f}(t,boldsymbol{x})$. Defining $boldsymbol{x} := (x,y)^{top}$ the given equations can be written in the form
                  begin{equation}
                  boldsymbol{underline{A}} boldsymbol{x}' + boldsymbol{x} = boldsymbol{b}, quad textrm{where} quad boldsymbol{underline{A}} := left( begin{array}{cc}
                  1 & -1\
                  1 & 1
                  end{array}
                  right) quad textrm{and} quad boldsymbol{b}(t) := left( begin{array}{c}
                  -t\
                  1
                  end{array}
                  right).
                  end{equation}

                  Because the matrix $boldsymbol{underline{A}}$ is invertible ($det(boldsymbol{underline{A}}) = 2 neq 0$) we may solve for the derivative:
                  begin{equation}
                  boldsymbol{x}' = boldsymbol{underline{A}}^{-1}left( boldsymbol{b} - boldsymbol{x} right) =: boldsymbol{f}(t,boldsymbol{x}), quad textrm{where } quad boldsymbol{underline{A}}^{-1} = frac{1}{2} left( begin{array}{cc}
                  1 & 1\
                  -1 & 1
                  end{array}
                  right).
                  end{equation}

                  In your answer you forgot to multiply $boldsymbol{b}$ by $boldsymbol{underline{A}}^{-1}$.



                  Now we have a non-homogeneous linear system of ODEs with constant coefficients, which may be solved using a matrix exponential. But I think the exercise was not to solve the equations, but just to reduce them to the normal form.



                  For a hint on the solution see Moo's comment.







                  share|cite|improve this answer








                  New contributor




                  Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  share|cite|improve this answer



                  share|cite|improve this answer






                  New contributor




                  Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  answered yesterday









                  Christoph

                  364




                  364




                  New contributor




                  Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





                  New contributor





                  Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  Christoph is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.























                      0














                      Adding two equations gives
                      $$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
                      Using the second equation to subtract the first one gives
                      $$ y'=frac12x-frac12y+frac12t+frac12. $$
                      Thus
                      $$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
                      frac12&-frac12
                      end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$






                      share|cite|improve this answer


























                        0














                        Adding two equations gives
                        $$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
                        Using the second equation to subtract the first one gives
                        $$ y'=frac12x-frac12y+frac12t+frac12. $$
                        Thus
                        $$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
                        frac12&-frac12
                        end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$






                        share|cite|improve this answer
























                          0












                          0








                          0






                          Adding two equations gives
                          $$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
                          Using the second equation to subtract the first one gives
                          $$ y'=frac12x-frac12y+frac12t+frac12. $$
                          Thus
                          $$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
                          frac12&-frac12
                          end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$






                          share|cite|improve this answer












                          Adding two equations gives
                          $$ x'=-frac12 x-frac12 y-frac12t+frac12. $$
                          Using the second equation to subtract the first one gives
                          $$ y'=frac12x-frac12y+frac12t+frac12. $$
                          Thus
                          $$ binom{x'}{y'}=left(begin{matrix}-frac12&-frac12\
                          frac12&-frac12
                          end{matrix}right)binom{x}{y}+binom{-frac12t+frac12}{frac12t+frac12}.$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered yesterday









                          xpaul

                          22.4k14455




                          22.4k14455






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062364%2fdifferential-equations-in-the-normal-form%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Mario Kart Wii

                              What does “Dominus providebit” mean?

                              Antonio Litta Visconti Arese