Prove $frac{1+iz}{1-iz}=frac{a+ib}{1+c}$ if $b+ic=(1+a)z$ and $a^2+b^2+c^2=1$

Multi tool use
$begingroup$
If $b+ic=(1+a)z$ and $a^2+b^2+c^2=1$ then prove that $dfrac{1+iz}{1-iz}=dfrac{a+ib}{1+c}$
My Attempt
$$
z=frac{b}{1+a}+ifrac{c}{1+a}implies iz=frac{-c}{1+a}+ifrac{b}{1+a}\
frac{1+iz}{1-iz}=frac{frac{1+a-c}{1+a}+ifrac{b}{1+a}}{frac{1+a+c}{1+a}-ifrac{b}{1+a}}=frac{1+a-c+ib}{1+a+c-ib}.frac{1+a+c+ib}{1+a+c+ib}\
=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}=frac{1+a^2-b^2+2a+2iab+2ib-c^2}{1+a^2+c^2+2a+2c+2ac+b^2}
$$
I don't think its going anywhere with my attempt, how can I solve it easily as it was asked as a multiple choice question ?
complex-numbers
$endgroup$
add a comment |
$begingroup$
If $b+ic=(1+a)z$ and $a^2+b^2+c^2=1$ then prove that $dfrac{1+iz}{1-iz}=dfrac{a+ib}{1+c}$
My Attempt
$$
z=frac{b}{1+a}+ifrac{c}{1+a}implies iz=frac{-c}{1+a}+ifrac{b}{1+a}\
frac{1+iz}{1-iz}=frac{frac{1+a-c}{1+a}+ifrac{b}{1+a}}{frac{1+a+c}{1+a}-ifrac{b}{1+a}}=frac{1+a-c+ib}{1+a+c-ib}.frac{1+a+c+ib}{1+a+c+ib}\
=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}=frac{1+a^2-b^2+2a+2iab+2ib-c^2}{1+a^2+c^2+2a+2c+2ac+b^2}
$$
I don't think its going anywhere with my attempt, how can I solve it easily as it was asked as a multiple choice question ?
complex-numbers
$endgroup$
$begingroup$
How is a prove that question multiple choice?
$endgroup$
– Peter Foreman
Jan 22 at 8:13
$begingroup$
@PeterForeman it was to evaluate $frac{1+iz}{1-iz}$, and the solution given in my reference was $frac{a+ib}{1+c}$
$endgroup$
– ss1729
Jan 22 at 8:14
1
$begingroup$
books.google.co.in/…
$endgroup$
– lab bhattacharjee
Jan 22 at 9:11
add a comment |
$begingroup$
If $b+ic=(1+a)z$ and $a^2+b^2+c^2=1$ then prove that $dfrac{1+iz}{1-iz}=dfrac{a+ib}{1+c}$
My Attempt
$$
z=frac{b}{1+a}+ifrac{c}{1+a}implies iz=frac{-c}{1+a}+ifrac{b}{1+a}\
frac{1+iz}{1-iz}=frac{frac{1+a-c}{1+a}+ifrac{b}{1+a}}{frac{1+a+c}{1+a}-ifrac{b}{1+a}}=frac{1+a-c+ib}{1+a+c-ib}.frac{1+a+c+ib}{1+a+c+ib}\
=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}=frac{1+a^2-b^2+2a+2iab+2ib-c^2}{1+a^2+c^2+2a+2c+2ac+b^2}
$$
I don't think its going anywhere with my attempt, how can I solve it easily as it was asked as a multiple choice question ?
complex-numbers
$endgroup$
If $b+ic=(1+a)z$ and $a^2+b^2+c^2=1$ then prove that $dfrac{1+iz}{1-iz}=dfrac{a+ib}{1+c}$
My Attempt
$$
z=frac{b}{1+a}+ifrac{c}{1+a}implies iz=frac{-c}{1+a}+ifrac{b}{1+a}\
frac{1+iz}{1-iz}=frac{frac{1+a-c}{1+a}+ifrac{b}{1+a}}{frac{1+a+c}{1+a}-ifrac{b}{1+a}}=frac{1+a-c+ib}{1+a+c-ib}.frac{1+a+c+ib}{1+a+c+ib}\
=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}=frac{1+a^2-b^2+2a+2iab+2ib-c^2}{1+a^2+c^2+2a+2c+2ac+b^2}
$$
I don't think its going anywhere with my attempt, how can I solve it easily as it was asked as a multiple choice question ?
complex-numbers
complex-numbers
edited Jan 22 at 9:44


greedoid
44.6k1156111
44.6k1156111
asked Jan 22 at 8:09


ss1729ss1729
1,97511023
1,97511023
$begingroup$
How is a prove that question multiple choice?
$endgroup$
– Peter Foreman
Jan 22 at 8:13
$begingroup$
@PeterForeman it was to evaluate $frac{1+iz}{1-iz}$, and the solution given in my reference was $frac{a+ib}{1+c}$
$endgroup$
– ss1729
Jan 22 at 8:14
1
$begingroup$
books.google.co.in/…
$endgroup$
– lab bhattacharjee
Jan 22 at 9:11
add a comment |
$begingroup$
How is a prove that question multiple choice?
$endgroup$
– Peter Foreman
Jan 22 at 8:13
$begingroup$
@PeterForeman it was to evaluate $frac{1+iz}{1-iz}$, and the solution given in my reference was $frac{a+ib}{1+c}$
$endgroup$
– ss1729
Jan 22 at 8:14
1
$begingroup$
books.google.co.in/…
$endgroup$
– lab bhattacharjee
Jan 22 at 9:11
$begingroup$
How is a prove that question multiple choice?
$endgroup$
– Peter Foreman
Jan 22 at 8:13
$begingroup$
How is a prove that question multiple choice?
$endgroup$
– Peter Foreman
Jan 22 at 8:13
$begingroup$
@PeterForeman it was to evaluate $frac{1+iz}{1-iz}$, and the solution given in my reference was $frac{a+ib}{1+c}$
$endgroup$
– ss1729
Jan 22 at 8:14
$begingroup$
@PeterForeman it was to evaluate $frac{1+iz}{1-iz}$, and the solution given in my reference was $frac{a+ib}{1+c}$
$endgroup$
– ss1729
Jan 22 at 8:14
1
1
$begingroup$
books.google.co.in/…
$endgroup$
– lab bhattacharjee
Jan 22 at 9:11
$begingroup$
books.google.co.in/…
$endgroup$
– lab bhattacharjee
Jan 22 at 9:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
begin{align}
frac{1+iz}{1-iz}&=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}\
&=frac{1+a^2-b^2-c^2+2a+2iab+2ib}{1+a^2+b^2+c^2+2a+2c+2ac}\
&=frac{1+a^2-(1-a^2)+2a+2iab+2ib}{1+1+2a+2c+2ac}\
&=frac{2a^2+2a+2iab+2ib}{2+2a+2c+2ac}\
&=frac{a^2+a+iab+ib}{1+a+c+ac}\
&=frac{a(a+1)+ib(a+1)}{(1+a)+c(1+a)}\
&=frac{a+ib}{1+c}\
end{align}
Can you find out your mistake now?
If you are interested, see spherical representation of complex numbers.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082871%2fprove-frac1iz1-iz-fracaib1c-if-bic-1az-and-a2b2c2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{align}
frac{1+iz}{1-iz}&=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}\
&=frac{1+a^2-b^2-c^2+2a+2iab+2ib}{1+a^2+b^2+c^2+2a+2c+2ac}\
&=frac{1+a^2-(1-a^2)+2a+2iab+2ib}{1+1+2a+2c+2ac}\
&=frac{2a^2+2a+2iab+2ib}{2+2a+2c+2ac}\
&=frac{a^2+a+iab+ib}{1+a+c+ac}\
&=frac{a(a+1)+ib(a+1)}{(1+a)+c(1+a)}\
&=frac{a+ib}{1+c}\
end{align}
Can you find out your mistake now?
If you are interested, see spherical representation of complex numbers.
$endgroup$
add a comment |
$begingroup$
begin{align}
frac{1+iz}{1-iz}&=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}\
&=frac{1+a^2-b^2-c^2+2a+2iab+2ib}{1+a^2+b^2+c^2+2a+2c+2ac}\
&=frac{1+a^2-(1-a^2)+2a+2iab+2ib}{1+1+2a+2c+2ac}\
&=frac{2a^2+2a+2iab+2ib}{2+2a+2c+2ac}\
&=frac{a^2+a+iab+ib}{1+a+c+ac}\
&=frac{a(a+1)+ib(a+1)}{(1+a)+c(1+a)}\
&=frac{a+ib}{1+c}\
end{align}
Can you find out your mistake now?
If you are interested, see spherical representation of complex numbers.
$endgroup$
add a comment |
$begingroup$
begin{align}
frac{1+iz}{1-iz}&=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}\
&=frac{1+a^2-b^2-c^2+2a+2iab+2ib}{1+a^2+b^2+c^2+2a+2c+2ac}\
&=frac{1+a^2-(1-a^2)+2a+2iab+2ib}{1+1+2a+2c+2ac}\
&=frac{2a^2+2a+2iab+2ib}{2+2a+2c+2ac}\
&=frac{a^2+a+iab+ib}{1+a+c+ac}\
&=frac{a(a+1)+ib(a+1)}{(1+a)+c(1+a)}\
&=frac{a+ib}{1+c}\
end{align}
Can you find out your mistake now?
If you are interested, see spherical representation of complex numbers.
$endgroup$
begin{align}
frac{1+iz}{1-iz}&=frac{(1+a+ib)^2-c^2}{(1+a+c)^2+b^2}\
&=frac{1+a^2-b^2-c^2+2a+2iab+2ib}{1+a^2+b^2+c^2+2a+2c+2ac}\
&=frac{1+a^2-(1-a^2)+2a+2iab+2ib}{1+1+2a+2c+2ac}\
&=frac{2a^2+2a+2iab+2ib}{2+2a+2c+2ac}\
&=frac{a^2+a+iab+ib}{1+a+c+ac}\
&=frac{a(a+1)+ib(a+1)}{(1+a)+c(1+a)}\
&=frac{a+ib}{1+c}\
end{align}
Can you find out your mistake now?
If you are interested, see spherical representation of complex numbers.
edited Jan 22 at 9:20


Martin R
29.4k33558
29.4k33558
answered Jan 22 at 9:08
Thomas ShelbyThomas Shelby
3,6992525
3,6992525
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082871%2fprove-frac1iz1-iz-fracaib1c-if-bic-1az-and-a2b2c2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
fmWksRPaHacIgUg
$begingroup$
How is a prove that question multiple choice?
$endgroup$
– Peter Foreman
Jan 22 at 8:13
$begingroup$
@PeterForeman it was to evaluate $frac{1+iz}{1-iz}$, and the solution given in my reference was $frac{a+ib}{1+c}$
$endgroup$
– ss1729
Jan 22 at 8:14
1
$begingroup$
books.google.co.in/…
$endgroup$
– lab bhattacharjee
Jan 22 at 9:11