how to prove that L is not context free












1












$begingroup$


Given $sum_2$ = {$begin{bmatrix} 0 \ 0 end{bmatrix}$, $begin{bmatrix} 0 \ 1 end{bmatrix}$,$begin{bmatrix} 1 \ 0 end{bmatrix}$,$begin{bmatrix} 1 \ 1end{bmatrix}$} , and a language $L$ = {$w$ $in$ $sum_2^*$ | $Top(w)$ = $Bott(w)^R$ $wedge$ $|w|_0$ = $|w|_1$} where
$Top(w)$ is the top row and $bott(w)$ is the bottom row.



For example, $w$ = $begin{bmatrix} 1 \ 0 end{bmatrix}$ $begin{bmatrix} 0 \ 1 end{bmatrix}$ then $Top(w)$ = $10$ and $bottom(w)$ = $01$.
I want to prove that $L$ isn't context free language.
I have tried to do so with pumping lemme and could not find a word that would get me to the needed contradiction (I assumed L is indeed context free).



Any help will do.



Thanks in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The two conditions by themselves definitely result in context-free languages; palindromes are even linear, counting one letter against the other is easy with a stack. Does the $|w|_0 = |w|_1$ refer to the "sum" of the bottom and top rows or to just one of them?
    $endgroup$
    – Peter Leupold
    Dec 19 '18 at 5:01
















1












$begingroup$


Given $sum_2$ = {$begin{bmatrix} 0 \ 0 end{bmatrix}$, $begin{bmatrix} 0 \ 1 end{bmatrix}$,$begin{bmatrix} 1 \ 0 end{bmatrix}$,$begin{bmatrix} 1 \ 1end{bmatrix}$} , and a language $L$ = {$w$ $in$ $sum_2^*$ | $Top(w)$ = $Bott(w)^R$ $wedge$ $|w|_0$ = $|w|_1$} where
$Top(w)$ is the top row and $bott(w)$ is the bottom row.



For example, $w$ = $begin{bmatrix} 1 \ 0 end{bmatrix}$ $begin{bmatrix} 0 \ 1 end{bmatrix}$ then $Top(w)$ = $10$ and $bottom(w)$ = $01$.
I want to prove that $L$ isn't context free language.
I have tried to do so with pumping lemme and could not find a word that would get me to the needed contradiction (I assumed L is indeed context free).



Any help will do.



Thanks in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The two conditions by themselves definitely result in context-free languages; palindromes are even linear, counting one letter against the other is easy with a stack. Does the $|w|_0 = |w|_1$ refer to the "sum" of the bottom and top rows or to just one of them?
    $endgroup$
    – Peter Leupold
    Dec 19 '18 at 5:01














1












1








1


1



$begingroup$


Given $sum_2$ = {$begin{bmatrix} 0 \ 0 end{bmatrix}$, $begin{bmatrix} 0 \ 1 end{bmatrix}$,$begin{bmatrix} 1 \ 0 end{bmatrix}$,$begin{bmatrix} 1 \ 1end{bmatrix}$} , and a language $L$ = {$w$ $in$ $sum_2^*$ | $Top(w)$ = $Bott(w)^R$ $wedge$ $|w|_0$ = $|w|_1$} where
$Top(w)$ is the top row and $bott(w)$ is the bottom row.



For example, $w$ = $begin{bmatrix} 1 \ 0 end{bmatrix}$ $begin{bmatrix} 0 \ 1 end{bmatrix}$ then $Top(w)$ = $10$ and $bottom(w)$ = $01$.
I want to prove that $L$ isn't context free language.
I have tried to do so with pumping lemme and could not find a word that would get me to the needed contradiction (I assumed L is indeed context free).



Any help will do.



Thanks in advance.










share|cite|improve this question









$endgroup$




Given $sum_2$ = {$begin{bmatrix} 0 \ 0 end{bmatrix}$, $begin{bmatrix} 0 \ 1 end{bmatrix}$,$begin{bmatrix} 1 \ 0 end{bmatrix}$,$begin{bmatrix} 1 \ 1end{bmatrix}$} , and a language $L$ = {$w$ $in$ $sum_2^*$ | $Top(w)$ = $Bott(w)^R$ $wedge$ $|w|_0$ = $|w|_1$} where
$Top(w)$ is the top row and $bott(w)$ is the bottom row.



For example, $w$ = $begin{bmatrix} 1 \ 0 end{bmatrix}$ $begin{bmatrix} 0 \ 1 end{bmatrix}$ then $Top(w)$ = $10$ and $bottom(w)$ = $01$.
I want to prove that $L$ isn't context free language.
I have tried to do so with pumping lemme and could not find a word that would get me to the needed contradiction (I assumed L is indeed context free).



Any help will do.



Thanks in advance.







computer-science formal-languages automata






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 18 '18 at 17:22









Avishai YanivAvishai Yaniv

173




173












  • $begingroup$
    The two conditions by themselves definitely result in context-free languages; palindromes are even linear, counting one letter against the other is easy with a stack. Does the $|w|_0 = |w|_1$ refer to the "sum" of the bottom and top rows or to just one of them?
    $endgroup$
    – Peter Leupold
    Dec 19 '18 at 5:01


















  • $begingroup$
    The two conditions by themselves definitely result in context-free languages; palindromes are even linear, counting one letter against the other is easy with a stack. Does the $|w|_0 = |w|_1$ refer to the "sum" of the bottom and top rows or to just one of them?
    $endgroup$
    – Peter Leupold
    Dec 19 '18 at 5:01
















$begingroup$
The two conditions by themselves definitely result in context-free languages; palindromes are even linear, counting one letter against the other is easy with a stack. Does the $|w|_0 = |w|_1$ refer to the "sum" of the bottom and top rows or to just one of them?
$endgroup$
– Peter Leupold
Dec 19 '18 at 5:01




$begingroup$
The two conditions by themselves definitely result in context-free languages; palindromes are even linear, counting one letter against the other is easy with a stack. Does the $|w|_0 = |w|_1$ refer to the "sum" of the bottom and top rows or to just one of them?
$endgroup$
– Peter Leupold
Dec 19 '18 at 5:01










1 Answer
1






active

oldest

votes


















0












$begingroup$

This answer assumes that $|w|_sigma$ is the total number of $sigma$'s in both rows of $w$.



Suppose that $L$ were context-free. Then so would be
$$
L' = L cap
left(
begin{bmatrix} 0 \ 0 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
right)^*
left(
begin{bmatrix} 1 \ 1 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
right)^*
left(
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 1 \ 1 end{bmatrix}
right)^*
left(
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 0 \ 0 end{bmatrix}
right)^* =
left{
left(
begin{bmatrix} 0 \ 0 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
right)^a
left(
begin{bmatrix} 1 \ 1 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
right)^b
left(
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 1 \ 1 end{bmatrix}
right)^c
left(
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 0 \ 0 end{bmatrix}
right)^d : \(011)^a(11)^b(01)^c(000)^d = (011)^d (11)^c (01)^b (000)^a, \
4(a+d) + (b+c) = 2(a+d) + 3(b+c)
right}.
$$

The first constraint implies that $a=d$ and $b=c$, simplifying the second constraint to $4a+b=2a+3b$, which in turn implies that $a=b$. Therefore
$$
L' =
left{
left(
begin{bmatrix} 0 \ 0 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
right)^n
left(
begin{bmatrix} 1 \ 1 end{bmatrix}
begin{bmatrix} 1 \ 0 end{bmatrix}
right)^n
left(
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 1 \ 1 end{bmatrix}
right)^n
left(
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 0 \ 1 end{bmatrix}
begin{bmatrix} 0 \ 0 end{bmatrix}
right)^n :
n geq 0
right}.
$$

Let $h$ be the homomorphism which maps $begin{bmatrix}0\0end{bmatrix}$ to $a$, $begin{bmatrix}1\1end{bmatrix}$ to $b$, and the other two letters to $epsilon$. If $L'$ were context-free then so would be
$$
L'' = h(L') = { a^n b^{2n} a^n : n geq 0 }.
$$

Let $kcolon {a,b,c}^* to {a,b}^*$ be the homomorphism given by $k(a) = k(c) = a$ and $k(b) = bb$. If $L''$ were context-free then so would be
$$
L''' = k^{-1}(L'') cap a^*b^*c^* = {a^n b^n c^n : n geq 0}.
$$

However, $L'''$ is well-known not to be context-free.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045430%2fhow-to-prove-that-l-is-not-context-free%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    This answer assumes that $|w|_sigma$ is the total number of $sigma$'s in both rows of $w$.



    Suppose that $L$ were context-free. Then so would be
    $$
    L' = L cap
    left(
    begin{bmatrix} 0 \ 0 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    right)^*
    left(
    begin{bmatrix} 1 \ 1 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    right)^*
    left(
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 1 \ 1 end{bmatrix}
    right)^*
    left(
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 0 \ 0 end{bmatrix}
    right)^* =
    left{
    left(
    begin{bmatrix} 0 \ 0 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    right)^a
    left(
    begin{bmatrix} 1 \ 1 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    right)^b
    left(
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 1 \ 1 end{bmatrix}
    right)^c
    left(
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 0 \ 0 end{bmatrix}
    right)^d : \(011)^a(11)^b(01)^c(000)^d = (011)^d (11)^c (01)^b (000)^a, \
    4(a+d) + (b+c) = 2(a+d) + 3(b+c)
    right}.
    $$

    The first constraint implies that $a=d$ and $b=c$, simplifying the second constraint to $4a+b=2a+3b$, which in turn implies that $a=b$. Therefore
    $$
    L' =
    left{
    left(
    begin{bmatrix} 0 \ 0 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    right)^n
    left(
    begin{bmatrix} 1 \ 1 end{bmatrix}
    begin{bmatrix} 1 \ 0 end{bmatrix}
    right)^n
    left(
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 1 \ 1 end{bmatrix}
    right)^n
    left(
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 0 \ 1 end{bmatrix}
    begin{bmatrix} 0 \ 0 end{bmatrix}
    right)^n :
    n geq 0
    right}.
    $$

    Let $h$ be the homomorphism which maps $begin{bmatrix}0\0end{bmatrix}$ to $a$, $begin{bmatrix}1\1end{bmatrix}$ to $b$, and the other two letters to $epsilon$. If $L'$ were context-free then so would be
    $$
    L'' = h(L') = { a^n b^{2n} a^n : n geq 0 }.
    $$

    Let $kcolon {a,b,c}^* to {a,b}^*$ be the homomorphism given by $k(a) = k(c) = a$ and $k(b) = bb$. If $L''$ were context-free then so would be
    $$
    L''' = k^{-1}(L'') cap a^*b^*c^* = {a^n b^n c^n : n geq 0}.
    $$

    However, $L'''$ is well-known not to be context-free.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      This answer assumes that $|w|_sigma$ is the total number of $sigma$'s in both rows of $w$.



      Suppose that $L$ were context-free. Then so would be
      $$
      L' = L cap
      left(
      begin{bmatrix} 0 \ 0 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      right)^*
      left(
      begin{bmatrix} 1 \ 1 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      right)^*
      left(
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 1 \ 1 end{bmatrix}
      right)^*
      left(
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 0 \ 0 end{bmatrix}
      right)^* =
      left{
      left(
      begin{bmatrix} 0 \ 0 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      right)^a
      left(
      begin{bmatrix} 1 \ 1 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      right)^b
      left(
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 1 \ 1 end{bmatrix}
      right)^c
      left(
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 0 \ 0 end{bmatrix}
      right)^d : \(011)^a(11)^b(01)^c(000)^d = (011)^d (11)^c (01)^b (000)^a, \
      4(a+d) + (b+c) = 2(a+d) + 3(b+c)
      right}.
      $$

      The first constraint implies that $a=d$ and $b=c$, simplifying the second constraint to $4a+b=2a+3b$, which in turn implies that $a=b$. Therefore
      $$
      L' =
      left{
      left(
      begin{bmatrix} 0 \ 0 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      right)^n
      left(
      begin{bmatrix} 1 \ 1 end{bmatrix}
      begin{bmatrix} 1 \ 0 end{bmatrix}
      right)^n
      left(
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 1 \ 1 end{bmatrix}
      right)^n
      left(
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 0 \ 1 end{bmatrix}
      begin{bmatrix} 0 \ 0 end{bmatrix}
      right)^n :
      n geq 0
      right}.
      $$

      Let $h$ be the homomorphism which maps $begin{bmatrix}0\0end{bmatrix}$ to $a$, $begin{bmatrix}1\1end{bmatrix}$ to $b$, and the other two letters to $epsilon$. If $L'$ were context-free then so would be
      $$
      L'' = h(L') = { a^n b^{2n} a^n : n geq 0 }.
      $$

      Let $kcolon {a,b,c}^* to {a,b}^*$ be the homomorphism given by $k(a) = k(c) = a$ and $k(b) = bb$. If $L''$ were context-free then so would be
      $$
      L''' = k^{-1}(L'') cap a^*b^*c^* = {a^n b^n c^n : n geq 0}.
      $$

      However, $L'''$ is well-known not to be context-free.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        This answer assumes that $|w|_sigma$ is the total number of $sigma$'s in both rows of $w$.



        Suppose that $L$ were context-free. Then so would be
        $$
        L' = L cap
        left(
        begin{bmatrix} 0 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^*
        left(
        begin{bmatrix} 1 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^*
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 1 end{bmatrix}
        right)^*
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 0 end{bmatrix}
        right)^* =
        left{
        left(
        begin{bmatrix} 0 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^a
        left(
        begin{bmatrix} 1 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^b
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 1 end{bmatrix}
        right)^c
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 0 end{bmatrix}
        right)^d : \(011)^a(11)^b(01)^c(000)^d = (011)^d (11)^c (01)^b (000)^a, \
        4(a+d) + (b+c) = 2(a+d) + 3(b+c)
        right}.
        $$

        The first constraint implies that $a=d$ and $b=c$, simplifying the second constraint to $4a+b=2a+3b$, which in turn implies that $a=b$. Therefore
        $$
        L' =
        left{
        left(
        begin{bmatrix} 0 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^n
        left(
        begin{bmatrix} 1 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^n
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 1 end{bmatrix}
        right)^n
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 0 end{bmatrix}
        right)^n :
        n geq 0
        right}.
        $$

        Let $h$ be the homomorphism which maps $begin{bmatrix}0\0end{bmatrix}$ to $a$, $begin{bmatrix}1\1end{bmatrix}$ to $b$, and the other two letters to $epsilon$. If $L'$ were context-free then so would be
        $$
        L'' = h(L') = { a^n b^{2n} a^n : n geq 0 }.
        $$

        Let $kcolon {a,b,c}^* to {a,b}^*$ be the homomorphism given by $k(a) = k(c) = a$ and $k(b) = bb$. If $L''$ were context-free then so would be
        $$
        L''' = k^{-1}(L'') cap a^*b^*c^* = {a^n b^n c^n : n geq 0}.
        $$

        However, $L'''$ is well-known not to be context-free.






        share|cite|improve this answer









        $endgroup$



        This answer assumes that $|w|_sigma$ is the total number of $sigma$'s in both rows of $w$.



        Suppose that $L$ were context-free. Then so would be
        $$
        L' = L cap
        left(
        begin{bmatrix} 0 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^*
        left(
        begin{bmatrix} 1 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^*
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 1 end{bmatrix}
        right)^*
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 0 end{bmatrix}
        right)^* =
        left{
        left(
        begin{bmatrix} 0 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^a
        left(
        begin{bmatrix} 1 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^b
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 1 end{bmatrix}
        right)^c
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 0 end{bmatrix}
        right)^d : \(011)^a(11)^b(01)^c(000)^d = (011)^d (11)^c (01)^b (000)^a, \
        4(a+d) + (b+c) = 2(a+d) + 3(b+c)
        right}.
        $$

        The first constraint implies that $a=d$ and $b=c$, simplifying the second constraint to $4a+b=2a+3b$, which in turn implies that $a=b$. Therefore
        $$
        L' =
        left{
        left(
        begin{bmatrix} 0 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^n
        left(
        begin{bmatrix} 1 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 0 end{bmatrix}
        right)^n
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 1 \ 1 end{bmatrix}
        right)^n
        left(
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 1 end{bmatrix}
        begin{bmatrix} 0 \ 0 end{bmatrix}
        right)^n :
        n geq 0
        right}.
        $$

        Let $h$ be the homomorphism which maps $begin{bmatrix}0\0end{bmatrix}$ to $a$, $begin{bmatrix}1\1end{bmatrix}$ to $b$, and the other two letters to $epsilon$. If $L'$ were context-free then so would be
        $$
        L'' = h(L') = { a^n b^{2n} a^n : n geq 0 }.
        $$

        Let $kcolon {a,b,c}^* to {a,b}^*$ be the homomorphism given by $k(a) = k(c) = a$ and $k(b) = bb$. If $L''$ were context-free then so would be
        $$
        L''' = k^{-1}(L'') cap a^*b^*c^* = {a^n b^n c^n : n geq 0}.
        $$

        However, $L'''$ is well-known not to be context-free.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 16 at 21:59









        Yuval FilmusYuval Filmus

        48.6k471144




        48.6k471144






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045430%2fhow-to-prove-that-l-is-not-context-free%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?