Functorial proof of Cayley-Hamilton using exterior powers

Multi tool use
$begingroup$
Let $V$ be a rank $n$ free module over a commutative ring $R$. Let $dagger$ denote the adjoint with respect to the natural perfect pairing given by the wedge product $$Lambda ^kotimes Lambda ^{n-k}overset{wedge}{longrightarrow} Lambda ^n.$$
Using naturality and uniqueness of adjoints w.r.t perfect pairings one can prove $(Lambda ^{n-k}f)^daggercirc Lambda ^kf=det fcdot 1_{Lambda^kV}$.
Now let $Voverset{f}{to}V$ be an $R$-linear endomorphism. It induces an $R[f]$-module structure on $V$ which in turn induces an $R[f,t]$-module structure on the $R[t]$-module $Votimes _RR[t]$. Define the characteristic polynomial $chi_fin R[t]$ of $f$ to be the determinant of the $R[t]$-linear endomorphism $f-t$ of the $R[t]$-module $Votimes _RR[t]$.
By the above fact we have the following equation in the category of $R[t]$-modules. $$(Lambda ^{n-k}(f-t))^daggercirc Lambda ^k(f-t)=chi_fcdot 1_{Lambda^k(Votimes_RR[t])}$$
I'm trying to follow the proof of Cayley-Hamilton along these lines given in 28.10, but I am confused by the sudden passage to the category of $R[f,t]cong R[f]otimes _RR[t]$-modules.
How to formally derive the Cayley-Hamilton theorem from the latter equation?
linear-algebra commutative-algebra modules exterior-algebra cayley-hamilton
$endgroup$
add a comment |
$begingroup$
Let $V$ be a rank $n$ free module over a commutative ring $R$. Let $dagger$ denote the adjoint with respect to the natural perfect pairing given by the wedge product $$Lambda ^kotimes Lambda ^{n-k}overset{wedge}{longrightarrow} Lambda ^n.$$
Using naturality and uniqueness of adjoints w.r.t perfect pairings one can prove $(Lambda ^{n-k}f)^daggercirc Lambda ^kf=det fcdot 1_{Lambda^kV}$.
Now let $Voverset{f}{to}V$ be an $R$-linear endomorphism. It induces an $R[f]$-module structure on $V$ which in turn induces an $R[f,t]$-module structure on the $R[t]$-module $Votimes _RR[t]$. Define the characteristic polynomial $chi_fin R[t]$ of $f$ to be the determinant of the $R[t]$-linear endomorphism $f-t$ of the $R[t]$-module $Votimes _RR[t]$.
By the above fact we have the following equation in the category of $R[t]$-modules. $$(Lambda ^{n-k}(f-t))^daggercirc Lambda ^k(f-t)=chi_fcdot 1_{Lambda^k(Votimes_RR[t])}$$
I'm trying to follow the proof of Cayley-Hamilton along these lines given in 28.10, but I am confused by the sudden passage to the category of $R[f,t]cong R[f]otimes _RR[t]$-modules.
How to formally derive the Cayley-Hamilton theorem from the latter equation?
linear-algebra commutative-algebra modules exterior-algebra cayley-hamilton
$endgroup$
add a comment |
$begingroup$
Let $V$ be a rank $n$ free module over a commutative ring $R$. Let $dagger$ denote the adjoint with respect to the natural perfect pairing given by the wedge product $$Lambda ^kotimes Lambda ^{n-k}overset{wedge}{longrightarrow} Lambda ^n.$$
Using naturality and uniqueness of adjoints w.r.t perfect pairings one can prove $(Lambda ^{n-k}f)^daggercirc Lambda ^kf=det fcdot 1_{Lambda^kV}$.
Now let $Voverset{f}{to}V$ be an $R$-linear endomorphism. It induces an $R[f]$-module structure on $V$ which in turn induces an $R[f,t]$-module structure on the $R[t]$-module $Votimes _RR[t]$. Define the characteristic polynomial $chi_fin R[t]$ of $f$ to be the determinant of the $R[t]$-linear endomorphism $f-t$ of the $R[t]$-module $Votimes _RR[t]$.
By the above fact we have the following equation in the category of $R[t]$-modules. $$(Lambda ^{n-k}(f-t))^daggercirc Lambda ^k(f-t)=chi_fcdot 1_{Lambda^k(Votimes_RR[t])}$$
I'm trying to follow the proof of Cayley-Hamilton along these lines given in 28.10, but I am confused by the sudden passage to the category of $R[f,t]cong R[f]otimes _RR[t]$-modules.
How to formally derive the Cayley-Hamilton theorem from the latter equation?
linear-algebra commutative-algebra modules exterior-algebra cayley-hamilton
$endgroup$
Let $V$ be a rank $n$ free module over a commutative ring $R$. Let $dagger$ denote the adjoint with respect to the natural perfect pairing given by the wedge product $$Lambda ^kotimes Lambda ^{n-k}overset{wedge}{longrightarrow} Lambda ^n.$$
Using naturality and uniqueness of adjoints w.r.t perfect pairings one can prove $(Lambda ^{n-k}f)^daggercirc Lambda ^kf=det fcdot 1_{Lambda^kV}$.
Now let $Voverset{f}{to}V$ be an $R$-linear endomorphism. It induces an $R[f]$-module structure on $V$ which in turn induces an $R[f,t]$-module structure on the $R[t]$-module $Votimes _RR[t]$. Define the characteristic polynomial $chi_fin R[t]$ of $f$ to be the determinant of the $R[t]$-linear endomorphism $f-t$ of the $R[t]$-module $Votimes _RR[t]$.
By the above fact we have the following equation in the category of $R[t]$-modules. $$(Lambda ^{n-k}(f-t))^daggercirc Lambda ^k(f-t)=chi_fcdot 1_{Lambda^k(Votimes_RR[t])}$$
I'm trying to follow the proof of Cayley-Hamilton along these lines given in 28.10, but I am confused by the sudden passage to the category of $R[f,t]cong R[f]otimes _RR[t]$-modules.
How to formally derive the Cayley-Hamilton theorem from the latter equation?
linear-algebra commutative-algebra modules exterior-algebra cayley-hamilton
linear-algebra commutative-algebra modules exterior-algebra cayley-hamilton
asked Jan 16 at 23:23


ArrowArrow
5,19431446
5,19431446
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076417%2ffunctorial-proof-of-cayley-hamilton-using-exterior-powers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076417%2ffunctorial-proof-of-cayley-hamilton-using-exterior-powers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
QUyNy7QirOycsSk46k,Kf 5wLso,J2t4ysrfvfVJcn7hrK0YJA9XaoS7amTZ,RR6tXYTpp