If one number is thrice the other and their sum is $16$, find the numbers












1












$begingroup$


If one number is thrice the other and their sum is $16$, find the numbers.



I tried,
Let the first number be $x$ and the second number be $y$
Acc. to question



$$
begin{align}
x&=3y &iff x-3y=0 &&(1)\
x&=16-3y&&&(2)
end{align}
$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    One number is $x$, the other $3x$. They add to 16, so ... .
    $endgroup$
    – Chris Leary
    Jul 27 '14 at 20:01










  • $begingroup$
    the second part of the questions states "their sum is 16". this can be expressed as x+y=16
    $endgroup$
    – Mufasa
    Jul 27 '14 at 20:01
















1












$begingroup$


If one number is thrice the other and their sum is $16$, find the numbers.



I tried,
Let the first number be $x$ and the second number be $y$
Acc. to question



$$
begin{align}
x&=3y &iff x-3y=0 &&(1)\
x&=16-3y&&&(2)
end{align}
$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    One number is $x$, the other $3x$. They add to 16, so ... .
    $endgroup$
    – Chris Leary
    Jul 27 '14 at 20:01










  • $begingroup$
    the second part of the questions states "their sum is 16". this can be expressed as x+y=16
    $endgroup$
    – Mufasa
    Jul 27 '14 at 20:01














1












1








1


1



$begingroup$


If one number is thrice the other and their sum is $16$, find the numbers.



I tried,
Let the first number be $x$ and the second number be $y$
Acc. to question



$$
begin{align}
x&=3y &iff x-3y=0 &&(1)\
x&=16-3y&&&(2)
end{align}
$$










share|cite|improve this question











$endgroup$




If one number is thrice the other and their sum is $16$, find the numbers.



I tried,
Let the first number be $x$ and the second number be $y$
Acc. to question



$$
begin{align}
x&=3y &iff x-3y=0 &&(1)\
x&=16-3y&&&(2)
end{align}
$$







algebra-precalculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 27 '14 at 20:49







user147263

















asked Jul 27 '14 at 19:57









AbhishekstudentAbhishekstudent

61821131




61821131












  • $begingroup$
    One number is $x$, the other $3x$. They add to 16, so ... .
    $endgroup$
    – Chris Leary
    Jul 27 '14 at 20:01










  • $begingroup$
    the second part of the questions states "their sum is 16". this can be expressed as x+y=16
    $endgroup$
    – Mufasa
    Jul 27 '14 at 20:01


















  • $begingroup$
    One number is $x$, the other $3x$. They add to 16, so ... .
    $endgroup$
    – Chris Leary
    Jul 27 '14 at 20:01










  • $begingroup$
    the second part of the questions states "their sum is 16". this can be expressed as x+y=16
    $endgroup$
    – Mufasa
    Jul 27 '14 at 20:01
















$begingroup$
One number is $x$, the other $3x$. They add to 16, so ... .
$endgroup$
– Chris Leary
Jul 27 '14 at 20:01




$begingroup$
One number is $x$, the other $3x$. They add to 16, so ... .
$endgroup$
– Chris Leary
Jul 27 '14 at 20:01












$begingroup$
the second part of the questions states "their sum is 16". this can be expressed as x+y=16
$endgroup$
– Mufasa
Jul 27 '14 at 20:01




$begingroup$
the second part of the questions states "their sum is 16". this can be expressed as x+y=16
$endgroup$
– Mufasa
Jul 27 '14 at 20:01










5 Answers
5






active

oldest

votes


















1












$begingroup$

The problem statement says
$$x+3x=16,$$
hence
$$x=4,\3x=12.$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      $$x=3y$$
      $$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$



      So, $x=12$.






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.






        share|cite|improve this answer











        $endgroup$





















          0












          $begingroup$

          Let the first number be $x$.



          Let the second number be $y$.



          According to question



          $$ tag{1}
          x+y=16
          $$

          $$
          tag{2}
          x=3y
          $$

          So, $x-3y=0 tag{2}$
          Multiply equation $(1)$ by $3$.



          Solve both equations:



          $$tag{1} 3x+3y=48$$
          $$tag{2} x-3y=0$$
          $$tag{1) + (2}4x=48$$
          $$tag{3}x=12$$
          Putting in equation $(1)$:
          $$tag{1} x+y=16$$
          $$tag{1),(3} 12+y=16$$
          $$tag{4}y=16-12$$
          $$tag{5}y=4$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
            $endgroup$
            – Bill O'Haran
            May 3 '18 at 15:57











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f879886%2fif-one-number-is-thrice-the-other-and-their-sum-is-16-find-the-numbers%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          The problem statement says
          $$x+3x=16,$$
          hence
          $$x=4,\3x=12.$$






          share|cite|improve this answer









          $endgroup$


















            1












            $begingroup$

            The problem statement says
            $$x+3x=16,$$
            hence
            $$x=4,\3x=12.$$






            share|cite|improve this answer









            $endgroup$
















              1












              1








              1





              $begingroup$

              The problem statement says
              $$x+3x=16,$$
              hence
              $$x=4,\3x=12.$$






              share|cite|improve this answer









              $endgroup$



              The problem statement says
              $$x+3x=16,$$
              hence
              $$x=4,\3x=12.$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jul 27 '14 at 20:06









              Yves DaoustYves Daoust

              129k676227




              129k676227























                  1












                  $begingroup$

                  I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...






                      share|cite|improve this answer









                      $endgroup$



                      I assume you have $$x=color{red}{3y}, ~~x+y=16$$ Then $3(x+color{red}{y})=3times 16=48$ and so $3x+color{red}{3y}=48$ and so $3x+x=48$ and so $4x=48$...







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jul 27 '14 at 20:03









                      mrsmrs

                      1




                      1























                          0












                          $begingroup$

                          $$x=3y$$
                          $$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$



                          So, $x=12$.






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            $$x=3y$$
                            $$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$



                            So, $x=12$.






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              $$x=3y$$
                              $$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$



                              So, $x=12$.






                              share|cite|improve this answer









                              $endgroup$



                              $$x=3y$$
                              $$y+x=16 Rightarrow y+3y=16 Rightarrow 4y=16 Rightarrow y=4$$



                              So, $x=12$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jul 27 '14 at 20:04









                              evindaevinda

                              4,09531853




                              4,09531853























                                  0












                                  $begingroup$

                                  Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.






                                  share|cite|improve this answer











                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.






                                    share|cite|improve this answer











                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.






                                      share|cite|improve this answer











                                      $endgroup$



                                      Let the 1st number be $x$ and the 2nd number be $3x$. Since $x + 3x = 16$, $4x = 16$, so $x=4$. Therefore, 1st number is $4$ and the other is $12$.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Jan 24 at 2:36









                                      YiFan

                                      4,4711627




                                      4,4711627










                                      answered Jan 24 at 1:10









                                      user637720user637720

                                      1




                                      1























                                          0












                                          $begingroup$

                                          Let the first number be $x$.



                                          Let the second number be $y$.



                                          According to question



                                          $$ tag{1}
                                          x+y=16
                                          $$

                                          $$
                                          tag{2}
                                          x=3y
                                          $$

                                          So, $x-3y=0 tag{2}$
                                          Multiply equation $(1)$ by $3$.



                                          Solve both equations:



                                          $$tag{1} 3x+3y=48$$
                                          $$tag{2} x-3y=0$$
                                          $$tag{1) + (2}4x=48$$
                                          $$tag{3}x=12$$
                                          Putting in equation $(1)$:
                                          $$tag{1} x+y=16$$
                                          $$tag{1),(3} 12+y=16$$
                                          $$tag{4}y=16-12$$
                                          $$tag{5}y=4$$






                                          share|cite|improve this answer











                                          $endgroup$









                                          • 1




                                            $begingroup$
                                            Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
                                            $endgroup$
                                            – Bill O'Haran
                                            May 3 '18 at 15:57
















                                          0












                                          $begingroup$

                                          Let the first number be $x$.



                                          Let the second number be $y$.



                                          According to question



                                          $$ tag{1}
                                          x+y=16
                                          $$

                                          $$
                                          tag{2}
                                          x=3y
                                          $$

                                          So, $x-3y=0 tag{2}$
                                          Multiply equation $(1)$ by $3$.



                                          Solve both equations:



                                          $$tag{1} 3x+3y=48$$
                                          $$tag{2} x-3y=0$$
                                          $$tag{1) + (2}4x=48$$
                                          $$tag{3}x=12$$
                                          Putting in equation $(1)$:
                                          $$tag{1} x+y=16$$
                                          $$tag{1),(3} 12+y=16$$
                                          $$tag{4}y=16-12$$
                                          $$tag{5}y=4$$






                                          share|cite|improve this answer











                                          $endgroup$









                                          • 1




                                            $begingroup$
                                            Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
                                            $endgroup$
                                            – Bill O'Haran
                                            May 3 '18 at 15:57














                                          0












                                          0








                                          0





                                          $begingroup$

                                          Let the first number be $x$.



                                          Let the second number be $y$.



                                          According to question



                                          $$ tag{1}
                                          x+y=16
                                          $$

                                          $$
                                          tag{2}
                                          x=3y
                                          $$

                                          So, $x-3y=0 tag{2}$
                                          Multiply equation $(1)$ by $3$.



                                          Solve both equations:



                                          $$tag{1} 3x+3y=48$$
                                          $$tag{2} x-3y=0$$
                                          $$tag{1) + (2}4x=48$$
                                          $$tag{3}x=12$$
                                          Putting in equation $(1)$:
                                          $$tag{1} x+y=16$$
                                          $$tag{1),(3} 12+y=16$$
                                          $$tag{4}y=16-12$$
                                          $$tag{5}y=4$$






                                          share|cite|improve this answer











                                          $endgroup$



                                          Let the first number be $x$.



                                          Let the second number be $y$.



                                          According to question



                                          $$ tag{1}
                                          x+y=16
                                          $$

                                          $$
                                          tag{2}
                                          x=3y
                                          $$

                                          So, $x-3y=0 tag{2}$
                                          Multiply equation $(1)$ by $3$.



                                          Solve both equations:



                                          $$tag{1} 3x+3y=48$$
                                          $$tag{2} x-3y=0$$
                                          $$tag{1) + (2}4x=48$$
                                          $$tag{3}x=12$$
                                          Putting in equation $(1)$:
                                          $$tag{1} x+y=16$$
                                          $$tag{1),(3} 12+y=16$$
                                          $$tag{4}y=16-12$$
                                          $$tag{5}y=4$$







                                          share|cite|improve this answer














                                          share|cite|improve this answer



                                          share|cite|improve this answer








                                          edited Jan 24 at 2:47









                                          Adam Hrankowski

                                          2,094930




                                          2,094930










                                          answered May 3 '18 at 15:50









                                          Rachit GuptaRachit Gupta

                                          21




                                          21








                                          • 1




                                            $begingroup$
                                            Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
                                            $endgroup$
                                            – Bill O'Haran
                                            May 3 '18 at 15:57














                                          • 1




                                            $begingroup$
                                            Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
                                            $endgroup$
                                            – Bill O'Haran
                                            May 3 '18 at 15:57








                                          1




                                          1




                                          $begingroup$
                                          Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
                                          $endgroup$
                                          – Bill O'Haran
                                          May 3 '18 at 15:57




                                          $begingroup$
                                          Welcome to MSE! Please use MathJax so the others can better benefit from your questions and answers.
                                          $endgroup$
                                          – Bill O'Haran
                                          May 3 '18 at 15:57


















                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f879886%2fif-one-number-is-thrice-the-other-and-their-sum-is-16-find-the-numbers%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Mario Kart Wii

                                          The Binding of Isaac: Rebirth/Afterbirth

                                          What does “Dominus providebit” mean?