Sums of unit vectors contained in a half-space












2












$begingroup$


Consider $n$ unit vectors ${v_1,...,v_n}$ with $v_iin mathbb{R}^3$. Now define



$text{H}(w):={w'inmathbb{R}^3 | (w',w)>0}, winmathbb{R}^3$



(where $(cdot,cdot)$ is the standard scalar product in $mathbb{R}^3$), i.e. the strict halfspace identified by the vector $w$. Assume $v_iintext{H}(w) forall i=1,...,n$.
For $n=2$, this implies



$v_1+v_2in text{H}(v_1)captext{H}(v_2)$.



Is it true that



$sum_i^n v_iin bigcap_{i}^ntext{H}(v_i)$



for $n>2$?
If the answer is yes, how can one prove it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
    $endgroup$
    – Math1000
    Jan 14 at 21:17










  • $begingroup$
    Yes! Sorry for not specifying.
    $endgroup$
    – Tanatofobico
    Jan 14 at 21:19










  • $begingroup$
    If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
    $endgroup$
    – Doug M
    Jan 14 at 21:31










  • $begingroup$
    Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
    $endgroup$
    – Tanatofobico
    Jan 14 at 22:04
















2












$begingroup$


Consider $n$ unit vectors ${v_1,...,v_n}$ with $v_iin mathbb{R}^3$. Now define



$text{H}(w):={w'inmathbb{R}^3 | (w',w)>0}, winmathbb{R}^3$



(where $(cdot,cdot)$ is the standard scalar product in $mathbb{R}^3$), i.e. the strict halfspace identified by the vector $w$. Assume $v_iintext{H}(w) forall i=1,...,n$.
For $n=2$, this implies



$v_1+v_2in text{H}(v_1)captext{H}(v_2)$.



Is it true that



$sum_i^n v_iin bigcap_{i}^ntext{H}(v_i)$



for $n>2$?
If the answer is yes, how can one prove it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
    $endgroup$
    – Math1000
    Jan 14 at 21:17










  • $begingroup$
    Yes! Sorry for not specifying.
    $endgroup$
    – Tanatofobico
    Jan 14 at 21:19










  • $begingroup$
    If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
    $endgroup$
    – Doug M
    Jan 14 at 21:31










  • $begingroup$
    Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
    $endgroup$
    – Tanatofobico
    Jan 14 at 22:04














2












2








2





$begingroup$


Consider $n$ unit vectors ${v_1,...,v_n}$ with $v_iin mathbb{R}^3$. Now define



$text{H}(w):={w'inmathbb{R}^3 | (w',w)>0}, winmathbb{R}^3$



(where $(cdot,cdot)$ is the standard scalar product in $mathbb{R}^3$), i.e. the strict halfspace identified by the vector $w$. Assume $v_iintext{H}(w) forall i=1,...,n$.
For $n=2$, this implies



$v_1+v_2in text{H}(v_1)captext{H}(v_2)$.



Is it true that



$sum_i^n v_iin bigcap_{i}^ntext{H}(v_i)$



for $n>2$?
If the answer is yes, how can one prove it?










share|cite|improve this question











$endgroup$




Consider $n$ unit vectors ${v_1,...,v_n}$ with $v_iin mathbb{R}^3$. Now define



$text{H}(w):={w'inmathbb{R}^3 | (w',w)>0}, winmathbb{R}^3$



(where $(cdot,cdot)$ is the standard scalar product in $mathbb{R}^3$), i.e. the strict halfspace identified by the vector $w$. Assume $v_iintext{H}(w) forall i=1,...,n$.
For $n=2$, this implies



$v_1+v_2in text{H}(v_1)captext{H}(v_2)$.



Is it true that



$sum_i^n v_iin bigcap_{i}^ntext{H}(v_i)$



for $n>2$?
If the answer is yes, how can one prove it?







geometry convex-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 14 at 22:08







Tanatofobico

















asked Jan 14 at 21:12









TanatofobicoTanatofobico

425




425












  • $begingroup$
    By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
    $endgroup$
    – Math1000
    Jan 14 at 21:17










  • $begingroup$
    Yes! Sorry for not specifying.
    $endgroup$
    – Tanatofobico
    Jan 14 at 21:19










  • $begingroup$
    If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
    $endgroup$
    – Doug M
    Jan 14 at 21:31










  • $begingroup$
    Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
    $endgroup$
    – Tanatofobico
    Jan 14 at 22:04


















  • $begingroup$
    By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
    $endgroup$
    – Math1000
    Jan 14 at 21:17










  • $begingroup$
    Yes! Sorry for not specifying.
    $endgroup$
    – Tanatofobico
    Jan 14 at 21:19










  • $begingroup$
    If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
    $endgroup$
    – Doug M
    Jan 14 at 21:31










  • $begingroup$
    Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
    $endgroup$
    – Tanatofobico
    Jan 14 at 22:04
















$begingroup$
By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
$endgroup$
– Math1000
Jan 14 at 21:17




$begingroup$
By $(w', w)$ do you mean the (standard) inner product of $w'$ and $w$?
$endgroup$
– Math1000
Jan 14 at 21:17












$begingroup$
Yes! Sorry for not specifying.
$endgroup$
– Tanatofobico
Jan 14 at 21:19




$begingroup$
Yes! Sorry for not specifying.
$endgroup$
– Tanatofobico
Jan 14 at 21:19












$begingroup$
If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
$endgroup$
– Doug M
Jan 14 at 21:31




$begingroup$
If we relax the constraint that $v_1, v_2$ are unit vectors is our proposition true in the case $n=2,$ when $n>2$ it is possible that $v_i, v_j, v_k $ are nearly parallel to each other, and the result of their sum is nowhere near a unit vector.
$endgroup$
– Doug M
Jan 14 at 21:31












$begingroup$
Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
$endgroup$
– Tanatofobico
Jan 14 at 22:04




$begingroup$
Not even in the case $n=2$ the sum of two unit vectors is always a unit vector, but I don't see how it should be required that the sum of unit vectors is a unit vector for proving the statement. Am I missing something?
$endgroup$
– Tanatofobico
Jan 14 at 22:04










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let $w=(0,1,0)$,



Let $theta in (0, frac{pi}2)$
$$v_1= (costheta, sin theta,0)$$



$$v_2=(-costheta, sin theta,0)$$
$$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$



We can check that $v_i in H(w)$.



$$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$



and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
&=-1end{align}



In particular, if we let $theta=0.01$,



$$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$



We can check that $v_1+v_2+v_3 notin H(v_2).$



octave:3> w=[0,1,0]
w =

0 1 0

octave:4> v1 = [cos(0.01), sin(0.01), 0]
v1 =

0.99995 0.01000 0.00000

octave:5> v2 = [-cos(0.01), sin(0.01), 0]
v2 =

-0.99995 0.01000 0.00000


octave:7> v3 = [cos(0.005), sin(0.005), 0]
v3 =

0.99999 0.00500 0.00000

octave:8> (v1+v2+v3)*v2'
ans = -0.99969





share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073751%2fsums-of-unit-vectors-contained-in-a-half-space%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Let $w=(0,1,0)$,



    Let $theta in (0, frac{pi}2)$
    $$v_1= (costheta, sin theta,0)$$



    $$v_2=(-costheta, sin theta,0)$$
    $$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$



    We can check that $v_i in H(w)$.



    $$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$



    and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
    &=-1end{align}



    In particular, if we let $theta=0.01$,



    $$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$



    We can check that $v_1+v_2+v_3 notin H(v_2).$



    octave:3> w=[0,1,0]
    w =

    0 1 0

    octave:4> v1 = [cos(0.01), sin(0.01), 0]
    v1 =

    0.99995 0.01000 0.00000

    octave:5> v2 = [-cos(0.01), sin(0.01), 0]
    v2 =

    -0.99995 0.01000 0.00000


    octave:7> v3 = [cos(0.005), sin(0.005), 0]
    v3 =

    0.99999 0.00500 0.00000

    octave:8> (v1+v2+v3)*v2'
    ans = -0.99969





    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      Let $w=(0,1,0)$,



      Let $theta in (0, frac{pi}2)$
      $$v_1= (costheta, sin theta,0)$$



      $$v_2=(-costheta, sin theta,0)$$
      $$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$



      We can check that $v_i in H(w)$.



      $$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$



      and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
      &=-1end{align}



      In particular, if we let $theta=0.01$,



      $$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$



      We can check that $v_1+v_2+v_3 notin H(v_2).$



      octave:3> w=[0,1,0]
      w =

      0 1 0

      octave:4> v1 = [cos(0.01), sin(0.01), 0]
      v1 =

      0.99995 0.01000 0.00000

      octave:5> v2 = [-cos(0.01), sin(0.01), 0]
      v2 =

      -0.99995 0.01000 0.00000


      octave:7> v3 = [cos(0.005), sin(0.005), 0]
      v3 =

      0.99999 0.00500 0.00000

      octave:8> (v1+v2+v3)*v2'
      ans = -0.99969





      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        Let $w=(0,1,0)$,



        Let $theta in (0, frac{pi}2)$
        $$v_1= (costheta, sin theta,0)$$



        $$v_2=(-costheta, sin theta,0)$$
        $$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$



        We can check that $v_i in H(w)$.



        $$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$



        and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
        &=-1end{align}



        In particular, if we let $theta=0.01$,



        $$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$



        We can check that $v_1+v_2+v_3 notin H(v_2).$



        octave:3> w=[0,1,0]
        w =

        0 1 0

        octave:4> v1 = [cos(0.01), sin(0.01), 0]
        v1 =

        0.99995 0.01000 0.00000

        octave:5> v2 = [-cos(0.01), sin(0.01), 0]
        v2 =

        -0.99995 0.01000 0.00000


        octave:7> v3 = [cos(0.005), sin(0.005), 0]
        v3 =

        0.99999 0.00500 0.00000

        octave:8> (v1+v2+v3)*v2'
        ans = -0.99969





        share|cite|improve this answer











        $endgroup$



        Let $w=(0,1,0)$,



        Let $theta in (0, frac{pi}2)$
        $$v_1= (costheta, sin theta,0)$$



        $$v_2=(-costheta, sin theta,0)$$
        $$v_3= (cosfrac{theta}2, sin frac{theta}2,0)$$



        We can check that $v_i in H(w)$.



        $$sum_{i=1}^3 v_i = (cos frac{theta}2,2sin theta + sin frac{theta}2 ,0)$$



        and begin{align}lim_{thetato 0^+}langle sum_{i=1}^3 v_i, v_2rangle&=lim_{thetato 0^+}left(-cos thetacos frac{theta}2+2sin^2theta+sin theta sin frac{ theta}2right) \
        &=-1end{align}



        In particular, if we let $theta=0.01$,



        $$v_1 = (cos(0.01),sin(0.01),0),$$$$ v_2 = (-cos(0.01), sin(0.01), 0), $$$$v_3=(cos(0.005),sin(0.005),0).$$



        We can check that $v_1+v_2+v_3 notin H(v_2).$



        octave:3> w=[0,1,0]
        w =

        0 1 0

        octave:4> v1 = [cos(0.01), sin(0.01), 0]
        v1 =

        0.99995 0.01000 0.00000

        octave:5> v2 = [-cos(0.01), sin(0.01), 0]
        v2 =

        -0.99995 0.01000 0.00000


        octave:7> v3 = [cos(0.005), sin(0.005), 0]
        v3 =

        0.99999 0.00500 0.00000

        octave:8> (v1+v2+v3)*v2'
        ans = -0.99969






        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 15 at 11:56

























        answered Jan 15 at 1:16









        Siong Thye GohSiong Thye Goh

        101k1466117




        101k1466117






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073751%2fsums-of-unit-vectors-contained-in-a-half-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?