Prove that if $g(x)leq g(y)$ then $F(x)leq F(y),$ where $F(x)=int^{g(x)}_{a}f(t)dt$












1












$begingroup$


Can you help me check if this is correct?




Prove that if $f$ is continuous and nonnegative on $[a,b]$ and $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$
$$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$




PROOF 1



Since $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$ then $g'(x)geq 0,;forall;xin [a,b]$
begin{align} F'(x)&=dfrac{d}{dx}int^{g(x)}_{a}f(t)dt \&=fleft(g(x)right)g'(x) geq 0,;forall;xin [a,b]end{align}
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$



PROOF 2



Let $x,yin[a,b]$ be fixed such that $xleq y$. Since $g$ is nondecreasing, then $g(x)leq g(y).$ Thus, $[a,g(x)]subseteq [a,g(y)]$ and
$$F(x)=int^{g(x)}_{a}f(t)dtleq int^{g(y)}_{a}f(t)dt =F(y)$$
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Looks OK, but the best you can conclude is that $F$ is nondecreasing.
    $endgroup$
    – Umberto P.
    Jan 14 at 21:09










  • $begingroup$
    Thanks for your feedback! I'll edit!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 21:10








  • 1




    $begingroup$
    No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
    $endgroup$
    – Arthur
    Jan 14 at 21:14












  • $begingroup$
    @Arthur: Hmm... I see you what you've stated!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 21:18






  • 1




    $begingroup$
    @UmbertoP. I think the constant function is monotonically increasing as well.
    $endgroup$
    – Botond
    Jan 14 at 21:24


















1












$begingroup$


Can you help me check if this is correct?




Prove that if $f$ is continuous and nonnegative on $[a,b]$ and $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$
$$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$




PROOF 1



Since $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$ then $g'(x)geq 0,;forall;xin [a,b]$
begin{align} F'(x)&=dfrac{d}{dx}int^{g(x)}_{a}f(t)dt \&=fleft(g(x)right)g'(x) geq 0,;forall;xin [a,b]end{align}
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$



PROOF 2



Let $x,yin[a,b]$ be fixed such that $xleq y$. Since $g$ is nondecreasing, then $g(x)leq g(y).$ Thus, $[a,g(x)]subseteq [a,g(y)]$ and
$$F(x)=int^{g(x)}_{a}f(t)dtleq int^{g(y)}_{a}f(t)dt =F(y)$$
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Looks OK, but the best you can conclude is that $F$ is nondecreasing.
    $endgroup$
    – Umberto P.
    Jan 14 at 21:09










  • $begingroup$
    Thanks for your feedback! I'll edit!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 21:10








  • 1




    $begingroup$
    No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
    $endgroup$
    – Arthur
    Jan 14 at 21:14












  • $begingroup$
    @Arthur: Hmm... I see you what you've stated!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 21:18






  • 1




    $begingroup$
    @UmbertoP. I think the constant function is monotonically increasing as well.
    $endgroup$
    – Botond
    Jan 14 at 21:24
















1












1








1


1



$begingroup$


Can you help me check if this is correct?




Prove that if $f$ is continuous and nonnegative on $[a,b]$ and $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$
$$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$




PROOF 1



Since $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$ then $g'(x)geq 0,;forall;xin [a,b]$
begin{align} F'(x)&=dfrac{d}{dx}int^{g(x)}_{a}f(t)dt \&=fleft(g(x)right)g'(x) geq 0,;forall;xin [a,b]end{align}
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$



PROOF 2



Let $x,yin[a,b]$ be fixed such that $xleq y$. Since $g$ is nondecreasing, then $g(x)leq g(y).$ Thus, $[a,g(x)]subseteq [a,g(y)]$ and
$$F(x)=int^{g(x)}_{a}f(t)dtleq int^{g(y)}_{a}f(t)dt =F(y)$$
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$










share|cite|improve this question











$endgroup$




Can you help me check if this is correct?




Prove that if $f$ is continuous and nonnegative on $[a,b]$ and $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$
$$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$




PROOF 1



Since $g:[a,b]to [a,b]$is differentiable and nondecreasing on $[a,b],$ then $g'(x)geq 0,;forall;xin [a,b]$
begin{align} F'(x)&=dfrac{d}{dx}int^{g(x)}_{a}f(t)dt \&=fleft(g(x)right)g'(x) geq 0,;forall;xin [a,b]end{align}
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$



PROOF 2



Let $x,yin[a,b]$ be fixed such that $xleq y$. Since $g$ is nondecreasing, then $g(x)leq g(y).$ Thus, $[a,g(x)]subseteq [a,g(y)]$ and
$$F(x)=int^{g(x)}_{a}f(t)dtleq int^{g(y)}_{a}f(t)dt =F(y)$$
Hence, $$F(x)=int^{g(x)}_{a}f(t)dt$$
is nondecreasing on $[a,b].$







real-analysis calculus analysis proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 3:27







Omojola Micheal

















asked Jan 14 at 21:04









Omojola MichealOmojola Micheal

1,851324




1,851324








  • 2




    $begingroup$
    Looks OK, but the best you can conclude is that $F$ is nondecreasing.
    $endgroup$
    – Umberto P.
    Jan 14 at 21:09










  • $begingroup$
    Thanks for your feedback! I'll edit!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 21:10








  • 1




    $begingroup$
    No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
    $endgroup$
    – Arthur
    Jan 14 at 21:14












  • $begingroup$
    @Arthur: Hmm... I see you what you've stated!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 21:18






  • 1




    $begingroup$
    @UmbertoP. I think the constant function is monotonically increasing as well.
    $endgroup$
    – Botond
    Jan 14 at 21:24
















  • 2




    $begingroup$
    Looks OK, but the best you can conclude is that $F$ is nondecreasing.
    $endgroup$
    – Umberto P.
    Jan 14 at 21:09










  • $begingroup$
    Thanks for your feedback! I'll edit!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 21:10








  • 1




    $begingroup$
    No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
    $endgroup$
    – Arthur
    Jan 14 at 21:14












  • $begingroup$
    @Arthur: Hmm... I see you what you've stated!
    $endgroup$
    – Omojola Micheal
    Jan 14 at 21:18






  • 1




    $begingroup$
    @UmbertoP. I think the constant function is monotonically increasing as well.
    $endgroup$
    – Botond
    Jan 14 at 21:24










2




2




$begingroup$
Looks OK, but the best you can conclude is that $F$ is nondecreasing.
$endgroup$
– Umberto P.
Jan 14 at 21:09




$begingroup$
Looks OK, but the best you can conclude is that $F$ is nondecreasing.
$endgroup$
– Umberto P.
Jan 14 at 21:09












$begingroup$
Thanks for your feedback! I'll edit!
$endgroup$
– Omojola Micheal
Jan 14 at 21:10






$begingroup$
Thanks for your feedback! I'll edit!
$endgroup$
– Omojola Micheal
Jan 14 at 21:10






1




1




$begingroup$
No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
$endgroup$
– Arthur
Jan 14 at 21:14






$begingroup$
No matter how many times I hear it, nondecreasing will sound to me like "not monotonically decreasing". Intellectually, I know that's not what it means. But intuitively that's what I think when I see the word. "Increasing" is a better term in my opinion.
$endgroup$
– Arthur
Jan 14 at 21:14














$begingroup$
@Arthur: Hmm... I see you what you've stated!
$endgroup$
– Omojola Micheal
Jan 14 at 21:18




$begingroup$
@Arthur: Hmm... I see you what you've stated!
$endgroup$
– Omojola Micheal
Jan 14 at 21:18




1




1




$begingroup$
@UmbertoP. I think the constant function is monotonically increasing as well.
$endgroup$
– Botond
Jan 14 at 21:24






$begingroup$
@UmbertoP. I think the constant function is monotonically increasing as well.
$endgroup$
– Botond
Jan 14 at 21:24












1 Answer
1






active

oldest

votes


















2












$begingroup$

This is correct; A little more general:




Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$




Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}



ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Maximilian Janisch: This is nice! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 14 at 22:07











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073741%2fprove-that-if-gx-leq-gy-then-fx-leq-fy-where-fx-intgx-af%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

This is correct; A little more general:




Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$




Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}



ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Maximilian Janisch: This is nice! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 14 at 22:07
















2












$begingroup$

This is correct; A little more general:




Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$




Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}



ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Maximilian Janisch: This is nice! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 14 at 22:07














2












2








2





$begingroup$

This is correct; A little more general:




Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$




Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}



ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}






share|cite|improve this answer











$endgroup$



This is correct; A little more general:




Claim. Let $[a,b] subsetmathbb{R}$ be a interval. Let $f: [a,b]rightarrow[0,infty[$ be a Riemann-integrable function such that $xle y implies f(x) le f(y) (text{for all } x,yin[a,b])$. Let $g: [a,b]rightarrow[a,b]$ be an arbitrary function that satisfies $xle y implies g(x) le g(y) (text{for all } x,yin[a,b]).\text{Then } displaystyle F(x) := int_a^{g(x)} f(t) mathrm{d}t text{ (for } xin[a,b]text{) is "nondecreasing".}$




Proof. Let $x,yin[a,b]$ with $xle y$. Then (by properties of the Riemann-Integral),
begin{equation*}
F(y) := int_a^{g(y)} f(t) mathrm{d}t = int_a^{g(x)} f(t) mathrm{d}t + int_{g(x)}^{g(y)} f(t) mathrm{d}t underbracegeq_{text{see (*)}} int_a^{g(x)} f(t) mathrm{d}t = F(x). quadsquare
end{equation*}



ADDENDUM
begin{align}tag{*}
& text{Note that } int_{g(x)}^{g(y)} f(t) mathrm{d}t
overbracegeq^{text{property of Riemann-Integral}} (g(y)-g(x)) cdotinf_{xin[a,b]} f(x)
geq 0,\
& text{since f }geq0text{ on }[a,b]text{ and }g(y)geq g(x)text{ i.e. } g(y)-g(x)geq0.
end{align}







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 14 at 21:59

























answered Jan 14 at 21:47









Maximilian JanischMaximilian Janisch

44110




44110












  • $begingroup$
    Maximilian Janisch: This is nice! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 14 at 22:07


















  • $begingroup$
    Maximilian Janisch: This is nice! (+1)
    $endgroup$
    – Omojola Micheal
    Jan 14 at 22:07
















$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07




$begingroup$
Maximilian Janisch: This is nice! (+1)
$endgroup$
– Omojola Micheal
Jan 14 at 22:07


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073741%2fprove-that-if-gx-leq-gy-then-fx-leq-fy-where-fx-intgx-af%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?