If $z=costheta + isin theta$ prove $frac{z^2-1}{z^2+1}=itantheta$












3












$begingroup$



If $z=costheta + isin theta$ prove $$frac{z^2-1}{z^2+1}=itantheta$$




Here is my workings, I'm not sure if I've made a mistake or I'm just not spotting what to do next. Any help would be appreciated.



$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
$$frac{(cos^2theta + 2isin theta costheta - sin^2theta)-1}{(cos^2theta + 2isin theta costheta - sin^2theta)+1}$$
$$frac{(cos^2theta - sin^2theta)+( 2isin theta costheta) -1}{(cos^2theta - sin^2theta)+( 2isin theta costheta)+1}$$
$$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}$$



I understand how I can do it with using $z=e^{i theta}$, however I want to solve it using double angle identities.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
    $endgroup$
    – Doug M
    Jan 14 at 21:58


















3












$begingroup$



If $z=costheta + isin theta$ prove $$frac{z^2-1}{z^2+1}=itantheta$$




Here is my workings, I'm not sure if I've made a mistake or I'm just not spotting what to do next. Any help would be appreciated.



$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
$$frac{(cos^2theta + 2isin theta costheta - sin^2theta)-1}{(cos^2theta + 2isin theta costheta - sin^2theta)+1}$$
$$frac{(cos^2theta - sin^2theta)+( 2isin theta costheta) -1}{(cos^2theta - sin^2theta)+( 2isin theta costheta)+1}$$
$$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}$$



I understand how I can do it with using $z=e^{i theta}$, however I want to solve it using double angle identities.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
    $endgroup$
    – Doug M
    Jan 14 at 21:58
















3












3








3





$begingroup$



If $z=costheta + isin theta$ prove $$frac{z^2-1}{z^2+1}=itantheta$$




Here is my workings, I'm not sure if I've made a mistake or I'm just not spotting what to do next. Any help would be appreciated.



$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
$$frac{(cos^2theta + 2isin theta costheta - sin^2theta)-1}{(cos^2theta + 2isin theta costheta - sin^2theta)+1}$$
$$frac{(cos^2theta - sin^2theta)+( 2isin theta costheta) -1}{(cos^2theta - sin^2theta)+( 2isin theta costheta)+1}$$
$$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}$$



I understand how I can do it with using $z=e^{i theta}$, however I want to solve it using double angle identities.










share|cite|improve this question











$endgroup$





If $z=costheta + isin theta$ prove $$frac{z^2-1}{z^2+1}=itantheta$$




Here is my workings, I'm not sure if I've made a mistake or I'm just not spotting what to do next. Any help would be appreciated.



$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
$$frac{(cos^2theta + 2isin theta costheta - sin^2theta)-1}{(cos^2theta + 2isin theta costheta - sin^2theta)+1}$$
$$frac{(cos^2theta - sin^2theta)+( 2isin theta costheta) -1}{(cos^2theta - sin^2theta)+( 2isin theta costheta)+1}$$
$$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}$$



I understand how I can do it with using $z=e^{i theta}$, however I want to solve it using double angle identities.







trigonometry complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 14 at 21:48







H.Linkhorn

















asked Jan 14 at 21:29









H.LinkhornH.Linkhorn

383113




383113












  • $begingroup$
    Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
    $endgroup$
    – Doug M
    Jan 14 at 21:58




















  • $begingroup$
    Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
    $endgroup$
    – Doug M
    Jan 14 at 21:58


















$begingroup$
Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
$endgroup$
– Doug M
Jan 14 at 21:58






$begingroup$
Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
$endgroup$
– Doug M
Jan 14 at 21:58












5 Answers
5






active

oldest

votes


















4












$begingroup$

Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    $z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      $cos theta +isin theta =e ^{i theta}$. Then



      $$begin{aligned}
      frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
      &=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
      &=frac{2 i sin theta}{2 cos theta}\
      &=itantheta
      end{aligned}$$






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        If you divide the numerator and denominator of



        $$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$



        by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain



        $$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$



        which simplifies to



        $$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$



        Then factor the numerator to get



        $$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$



        Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$






        share|cite|improve this answer









        $endgroup$





















          0












          $begingroup$

          Now where you've left off,



          use $cos2y=2cos^2y-1=1-2sin^2y (1)$



          to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$



          Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
          use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073776%2fif-z-cos-theta-i-sin-theta-prove-fracz2-1z21-i-tan-theta%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.






            share|cite|improve this answer









            $endgroup$


















              4












              $begingroup$

              Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.






              share|cite|improve this answer









              $endgroup$
















                4












                4








                4





                $begingroup$

                Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.






                share|cite|improve this answer









                $endgroup$



                Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 14 at 21:33









                J.G.J.G.

                25.5k22539




                25.5k22539























                    3












                    $begingroup$

                    $z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$






                    share|cite|improve this answer









                    $endgroup$


















                      3












                      $begingroup$

                      $z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$






                      share|cite|improve this answer









                      $endgroup$
















                        3












                        3








                        3





                        $begingroup$

                        $z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$






                        share|cite|improve this answer









                        $endgroup$



                        $z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Jan 14 at 21:38









                        MahranMahran

                        634




                        634























                            0












                            $begingroup$

                            $cos theta +isin theta =e ^{i theta}$. Then



                            $$begin{aligned}
                            frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
                            &=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
                            &=frac{2 i sin theta}{2 cos theta}\
                            &=itantheta
                            end{aligned}$$






                            share|cite|improve this answer









                            $endgroup$


















                              0












                              $begingroup$

                              $cos theta +isin theta =e ^{i theta}$. Then



                              $$begin{aligned}
                              frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
                              &=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
                              &=frac{2 i sin theta}{2 cos theta}\
                              &=itantheta
                              end{aligned}$$






                              share|cite|improve this answer









                              $endgroup$
















                                0












                                0








                                0





                                $begingroup$

                                $cos theta +isin theta =e ^{i theta}$. Then



                                $$begin{aligned}
                                frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
                                &=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
                                &=frac{2 i sin theta}{2 cos theta}\
                                &=itantheta
                                end{aligned}$$






                                share|cite|improve this answer









                                $endgroup$



                                $cos theta +isin theta =e ^{i theta}$. Then



                                $$begin{aligned}
                                frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
                                &=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
                                &=frac{2 i sin theta}{2 cos theta}\
                                &=itantheta
                                end{aligned}$$







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Jan 14 at 21:37









                                mathcounterexamples.netmathcounterexamples.net

                                26.5k22157




                                26.5k22157























                                    0












                                    $begingroup$

                                    If you divide the numerator and denominator of



                                    $$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$



                                    by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain



                                    $$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$



                                    which simplifies to



                                    $$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$



                                    Then factor the numerator to get



                                    $$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$



                                    Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$






                                    share|cite|improve this answer









                                    $endgroup$


















                                      0












                                      $begingroup$

                                      If you divide the numerator and denominator of



                                      $$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$



                                      by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain



                                      $$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$



                                      which simplifies to



                                      $$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$



                                      Then factor the numerator to get



                                      $$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$



                                      Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$






                                      share|cite|improve this answer









                                      $endgroup$
















                                        0












                                        0








                                        0





                                        $begingroup$

                                        If you divide the numerator and denominator of



                                        $$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$



                                        by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain



                                        $$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$



                                        which simplifies to



                                        $$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$



                                        Then factor the numerator to get



                                        $$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$



                                        Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$






                                        share|cite|improve this answer









                                        $endgroup$



                                        If you divide the numerator and denominator of



                                        $$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$



                                        by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain



                                        $$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$



                                        which simplifies to



                                        $$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$



                                        Then factor the numerator to get



                                        $$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$



                                        Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Jan 14 at 22:07









                                        John Wayland BalesJohn Wayland Bales

                                        14k21238




                                        14k21238























                                            0












                                            $begingroup$

                                            Now where you've left off,



                                            use $cos2y=2cos^2y-1=1-2sin^2y (1)$



                                            to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$



                                            Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
                                            use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$






                                            share|cite|improve this answer









                                            $endgroup$


















                                              0












                                              $begingroup$

                                              Now where you've left off,



                                              use $cos2y=2cos^2y-1=1-2sin^2y (1)$



                                              to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$



                                              Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
                                              use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$






                                              share|cite|improve this answer









                                              $endgroup$
















                                                0












                                                0








                                                0





                                                $begingroup$

                                                Now where you've left off,



                                                use $cos2y=2cos^2y-1=1-2sin^2y (1)$



                                                to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$



                                                Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
                                                use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$






                                                share|cite|improve this answer









                                                $endgroup$



                                                Now where you've left off,



                                                use $cos2y=2cos^2y-1=1-2sin^2y (1)$



                                                to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$



                                                Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
                                                use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Jan 15 at 4:25









                                                lab bhattacharjeelab bhattacharjee

                                                225k15157275




                                                225k15157275






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073776%2fif-z-cos-theta-i-sin-theta-prove-fracz2-1z21-i-tan-theta%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    Mario Kart Wii

                                                    What does “Dominus providebit” mean?

                                                    Antonio Litta Visconti Arese