If $z=costheta + isin theta$ prove $frac{z^2-1}{z^2+1}=itantheta$
$begingroup$
If $z=costheta + isin theta$ prove $$frac{z^2-1}{z^2+1}=itantheta$$
Here is my workings, I'm not sure if I've made a mistake or I'm just not spotting what to do next. Any help would be appreciated.
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
$$frac{(cos^2theta + 2isin theta costheta - sin^2theta)-1}{(cos^2theta + 2isin theta costheta - sin^2theta)+1}$$
$$frac{(cos^2theta - sin^2theta)+( 2isin theta costheta) -1}{(cos^2theta - sin^2theta)+( 2isin theta costheta)+1}$$
$$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}$$
I understand how I can do it with using $z=e^{i theta}$, however I want to solve it using double angle identities.
trigonometry complex-numbers
$endgroup$
add a comment |
$begingroup$
If $z=costheta + isin theta$ prove $$frac{z^2-1}{z^2+1}=itantheta$$
Here is my workings, I'm not sure if I've made a mistake or I'm just not spotting what to do next. Any help would be appreciated.
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
$$frac{(cos^2theta + 2isin theta costheta - sin^2theta)-1}{(cos^2theta + 2isin theta costheta - sin^2theta)+1}$$
$$frac{(cos^2theta - sin^2theta)+( 2isin theta costheta) -1}{(cos^2theta - sin^2theta)+( 2isin theta costheta)+1}$$
$$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}$$
I understand how I can do it with using $z=e^{i theta}$, however I want to solve it using double angle identities.
trigonometry complex-numbers
$endgroup$
$begingroup$
Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
$endgroup$
– Doug M
Jan 14 at 21:58
add a comment |
$begingroup$
If $z=costheta + isin theta$ prove $$frac{z^2-1}{z^2+1}=itantheta$$
Here is my workings, I'm not sure if I've made a mistake or I'm just not spotting what to do next. Any help would be appreciated.
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
$$frac{(cos^2theta + 2isin theta costheta - sin^2theta)-1}{(cos^2theta + 2isin theta costheta - sin^2theta)+1}$$
$$frac{(cos^2theta - sin^2theta)+( 2isin theta costheta) -1}{(cos^2theta - sin^2theta)+( 2isin theta costheta)+1}$$
$$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}$$
I understand how I can do it with using $z=e^{i theta}$, however I want to solve it using double angle identities.
trigonometry complex-numbers
$endgroup$
If $z=costheta + isin theta$ prove $$frac{z^2-1}{z^2+1}=itantheta$$
Here is my workings, I'm not sure if I've made a mistake or I'm just not spotting what to do next. Any help would be appreciated.
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
$$frac{(cos^2theta + 2isin theta costheta - sin^2theta)-1}{(cos^2theta + 2isin theta costheta - sin^2theta)+1}$$
$$frac{(cos^2theta - sin^2theta)+( 2isin theta costheta) -1}{(cos^2theta - sin^2theta)+( 2isin theta costheta)+1}$$
$$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}$$
I understand how I can do it with using $z=e^{i theta}$, however I want to solve it using double angle identities.
trigonometry complex-numbers
trigonometry complex-numbers
edited Jan 14 at 21:48
H.Linkhorn
asked Jan 14 at 21:29
H.LinkhornH.Linkhorn
383113
383113
$begingroup$
Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
$endgroup$
– Doug M
Jan 14 at 21:58
add a comment |
$begingroup$
Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
$endgroup$
– Doug M
Jan 14 at 21:58
$begingroup$
Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
$endgroup$
– Doug M
Jan 14 at 21:58
$begingroup$
Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
$endgroup$
– Doug M
Jan 14 at 21:58
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.
$endgroup$
add a comment |
$begingroup$
$z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$
$endgroup$
add a comment |
$begingroup$
$cos theta +isin theta =e ^{i theta}$. Then
$$begin{aligned}
frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
&=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
&=frac{2 i sin theta}{2 cos theta}\
&=itantheta
end{aligned}$$
$endgroup$
add a comment |
$begingroup$
If you divide the numerator and denominator of
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain
$$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$
which simplifies to
$$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$
Then factor the numerator to get
$$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$
Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$
$endgroup$
add a comment |
$begingroup$
Now where you've left off,
use $cos2y=2cos^2y-1=1-2sin^2y (1)$
to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$
Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073776%2fif-z-cos-theta-i-sin-theta-prove-fracz2-1z21-i-tan-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.
$endgroup$
add a comment |
$begingroup$
Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.
$endgroup$
add a comment |
$begingroup$
Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.
$endgroup$
Your approach will work with double angle formulae, but this is quicker: since $z=exp itheta$, $frac{z-1/z}{z+1/z}=frac{2isintheta}{2costheta}$.
answered Jan 14 at 21:33
J.G.J.G.
25.5k22539
25.5k22539
add a comment |
add a comment |
$begingroup$
$z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$
$endgroup$
add a comment |
$begingroup$
$z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$
$endgroup$
add a comment |
$begingroup$
$z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$
$endgroup$
$z=e^{itheta}$, $frac{z^2-1}{z^2+1}=frac{e^{2 itheta}-1}{e^{2itheta}+1}=frac{e^{ itheta}-e^{ -itheta}}{e^{itheta}+e^{ itheta}}=frac{2 i, sin(theta)}{2,cos(theta)}=itan(theta)$
answered Jan 14 at 21:38
MahranMahran
634
634
add a comment |
add a comment |
$begingroup$
$cos theta +isin theta =e ^{i theta}$. Then
$$begin{aligned}
frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
&=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
&=frac{2 i sin theta}{2 cos theta}\
&=itantheta
end{aligned}$$
$endgroup$
add a comment |
$begingroup$
$cos theta +isin theta =e ^{i theta}$. Then
$$begin{aligned}
frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
&=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
&=frac{2 i sin theta}{2 cos theta}\
&=itantheta
end{aligned}$$
$endgroup$
add a comment |
$begingroup$
$cos theta +isin theta =e ^{i theta}$. Then
$$begin{aligned}
frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
&=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
&=frac{2 i sin theta}{2 cos theta}\
&=itantheta
end{aligned}$$
$endgroup$
$cos theta +isin theta =e ^{i theta}$. Then
$$begin{aligned}
frac{z^2-1}{z^2+1}&=frac{z-1/z}{z+1/z}\
&=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-itheta}}\
&=frac{2 i sin theta}{2 cos theta}\
&=itantheta
end{aligned}$$
answered Jan 14 at 21:37
mathcounterexamples.netmathcounterexamples.net
26.5k22157
26.5k22157
add a comment |
add a comment |
$begingroup$
If you divide the numerator and denominator of
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain
$$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$
which simplifies to
$$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$
Then factor the numerator to get
$$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$
Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$
$endgroup$
add a comment |
$begingroup$
If you divide the numerator and denominator of
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain
$$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$
which simplifies to
$$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$
Then factor the numerator to get
$$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$
Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$
$endgroup$
add a comment |
$begingroup$
If you divide the numerator and denominator of
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain
$$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$
which simplifies to
$$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$
Then factor the numerator to get
$$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$
Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$
$endgroup$
If you divide the numerator and denominator of
$$frac{(costheta + isin theta)^2-1}{(costheta + isin theta)^2+1}$$
by $cos^2theta$ and then use the identity $sec^2theta=1+tan^2$ on the result you obtain
$$ frac{(1+i,tantheta)^2-1-tan^2theta}{(1+i,tantheta)^2+1+tan^2theta} $$
which simplifies to
$$ frac{i,tantheta-tan^2theta}{1+i,tantheta} $$
Then factor the numerator to get
$$ frac{i,tantheta(1+i,tantheta)}{1+i,tantheta}=i,tantheta $$
Note: This is an approach which can be taken if the student does not yet know that $e^{i,theta}=costheta+i,sintheta$
answered Jan 14 at 22:07
John Wayland BalesJohn Wayland Bales
14k21238
14k21238
add a comment |
add a comment |
$begingroup$
Now where you've left off,
use $cos2y=2cos^2y-1=1-2sin^2y (1)$
to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$
Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$
$endgroup$
add a comment |
$begingroup$
Now where you've left off,
use $cos2y=2cos^2y-1=1-2sin^2y (1)$
to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$
Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$
$endgroup$
add a comment |
$begingroup$
Now where you've left off,
use $cos2y=2cos^2y-1=1-2sin^2y (1)$
to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$
Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$
$endgroup$
Now where you've left off,
use $cos2y=2cos^2y-1=1-2sin^2y (1)$
to find $$frac{cos2theta + isin 2theta -1}{cos2theta + isin 2theta +1}=dfrac{-2sin^2theta+ isin 2theta}{2cos^2theta+ isin 2theta}=dfrac{2isintheta(costheta+isintheta)}{2costheta(costheta+isintheta)}=?$$
Similarly using Using De Moivre's theorem . $(1+i)^{100}$, $$z^n=(costheta+isintheta)^n=cos ntheta+isin ntheta $$
use $(1)$ to establish $$dfrac{z^n-1}{z^n+1}=2itandfrac{ntheta}2$$
answered Jan 15 at 4:25
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073776%2fif-z-cos-theta-i-sin-theta-prove-fracz2-1z21-i-tan-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Just using trig identities multiply top and bottom by $(cos theta -isintheta).$ You could also use $(cos 2theta -isin2 theta + 1)$
$endgroup$
– Doug M
Jan 14 at 21:58