show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$
$begingroup$
If $n=qm+r, 0 leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.
Answer:
If $q$ is a positive integer, then $a^{m}$ divides $large a^{qm}-1$. For,
$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$.
But I can not finish the problem.
Help me.
elementary-number-theory
$endgroup$
add a comment |
$begingroup$
If $n=qm+r, 0 leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.
Answer:
If $q$ is a positive integer, then $a^{m}$ divides $large a^{qm}-1$. For,
$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$.
But I can not finish the problem.
Help me.
elementary-number-theory
$endgroup$
$begingroup$
See this popular duplicate.
$endgroup$
– Dietrich Burde
Jan 18 at 19:43
add a comment |
$begingroup$
If $n=qm+r, 0 leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.
Answer:
If $q$ is a positive integer, then $a^{m}$ divides $large a^{qm}-1$. For,
$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$.
But I can not finish the problem.
Help me.
elementary-number-theory
$endgroup$
If $n=qm+r, 0 leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.
Answer:
If $q$ is a positive integer, then $a^{m}$ divides $large a^{qm}-1$. For,
$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$.
But I can not finish the problem.
Help me.
elementary-number-theory
elementary-number-theory
asked Jan 18 at 19:18
M. A. SARKARM. A. SARKAR
2,2121619
2,2121619
$begingroup$
See this popular duplicate.
$endgroup$
– Dietrich Burde
Jan 18 at 19:43
add a comment |
$begingroup$
See this popular duplicate.
$endgroup$
– Dietrich Burde
Jan 18 at 19:43
$begingroup$
See this popular duplicate.
$endgroup$
– Dietrich Burde
Jan 18 at 19:43
$begingroup$
See this popular duplicate.
$endgroup$
– Dietrich Burde
Jan 18 at 19:43
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.
$endgroup$
1
$begingroup$
Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
$endgroup$
– M. A. SARKAR
Jan 18 at 19:24
2
$begingroup$
@M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
$endgroup$
– Clive Newstead
Jan 18 at 19:26
add a comment |
$begingroup$
$bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$
i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078640%2fshow-that-the-remainder-upon-dividing-an-1-by-am-1-is-ar-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.
$endgroup$
1
$begingroup$
Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
$endgroup$
– M. A. SARKAR
Jan 18 at 19:24
2
$begingroup$
@M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
$endgroup$
– Clive Newstead
Jan 18 at 19:26
add a comment |
$begingroup$
Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.
$endgroup$
1
$begingroup$
Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
$endgroup$
– M. A. SARKAR
Jan 18 at 19:24
2
$begingroup$
@M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
$endgroup$
– Clive Newstead
Jan 18 at 19:26
add a comment |
$begingroup$
Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.
$endgroup$
Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.
answered Jan 18 at 19:21
Clive NewsteadClive Newstead
51.6k474135
51.6k474135
1
$begingroup$
Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
$endgroup$
– M. A. SARKAR
Jan 18 at 19:24
2
$begingroup$
@M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
$endgroup$
– Clive Newstead
Jan 18 at 19:26
add a comment |
1
$begingroup$
Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
$endgroup$
– M. A. SARKAR
Jan 18 at 19:24
2
$begingroup$
@M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
$endgroup$
– Clive Newstead
Jan 18 at 19:26
1
1
$begingroup$
Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
$endgroup$
– M. A. SARKAR
Jan 18 at 19:24
$begingroup$
Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
$endgroup$
– M. A. SARKAR
Jan 18 at 19:24
2
2
$begingroup$
@M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
$endgroup$
– Clive Newstead
Jan 18 at 19:26
$begingroup$
@M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
$endgroup$
– Clive Newstead
Jan 18 at 19:26
add a comment |
$begingroup$
$bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$
i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$
$endgroup$
add a comment |
$begingroup$
$bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$
i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$
$endgroup$
add a comment |
$begingroup$
$bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$
i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$
$endgroup$
$bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$
i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$
edited Jan 18 at 22:07
answered Jan 18 at 21:59
Bill DubuqueBill Dubuque
210k29192645
210k29192645
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078640%2fshow-that-the-remainder-upon-dividing-an-1-by-am-1-is-ar-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See this popular duplicate.
$endgroup$
– Dietrich Burde
Jan 18 at 19:43