show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$












2












$begingroup$


If $n=qm+r, 0 leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.



Answer:



If $q$ is a positive integer, then $a^{m}$ divides $large a^{qm}-1$. For,



$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$.



But I can not finish the problem.



Help me.










share|cite|improve this question









$endgroup$












  • $begingroup$
    See this popular duplicate.
    $endgroup$
    – Dietrich Burde
    Jan 18 at 19:43
















2












$begingroup$


If $n=qm+r, 0 leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.



Answer:



If $q$ is a positive integer, then $a^{m}$ divides $large a^{qm}-1$. For,



$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$.



But I can not finish the problem.



Help me.










share|cite|improve this question









$endgroup$












  • $begingroup$
    See this popular duplicate.
    $endgroup$
    – Dietrich Burde
    Jan 18 at 19:43














2












2








2


1



$begingroup$


If $n=qm+r, 0 leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.



Answer:



If $q$ is a positive integer, then $a^{m}$ divides $large a^{qm}-1$. For,



$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$.



But I can not finish the problem.



Help me.










share|cite|improve this question









$endgroup$




If $n=qm+r, 0 leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.



Answer:



If $q$ is a positive integer, then $a^{m}$ divides $large a^{qm}-1$. For,



$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$.



But I can not finish the problem.



Help me.







elementary-number-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 18 at 19:18









M. A. SARKARM. A. SARKAR

2,2121619




2,2121619












  • $begingroup$
    See this popular duplicate.
    $endgroup$
    – Dietrich Burde
    Jan 18 at 19:43


















  • $begingroup$
    See this popular duplicate.
    $endgroup$
    – Dietrich Burde
    Jan 18 at 19:43
















$begingroup$
See this popular duplicate.
$endgroup$
– Dietrich Burde
Jan 18 at 19:43




$begingroup$
See this popular duplicate.
$endgroup$
– Dietrich Burde
Jan 18 at 19:43










2 Answers
2






active

oldest

votes


















4












$begingroup$

Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
    $endgroup$
    – M. A. SARKAR
    Jan 18 at 19:24






  • 2




    $begingroup$
    @M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
    $endgroup$
    – Clive Newstead
    Jan 18 at 19:26





















1












$begingroup$

$bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$



i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078640%2fshow-that-the-remainder-upon-dividing-an-1-by-am-1-is-ar-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
      $endgroup$
      – M. A. SARKAR
      Jan 18 at 19:24






    • 2




      $begingroup$
      @M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
      $endgroup$
      – Clive Newstead
      Jan 18 at 19:26


















    4












    $begingroup$

    Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
      $endgroup$
      – M. A. SARKAR
      Jan 18 at 19:24






    • 2




      $begingroup$
      @M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
      $endgroup$
      – Clive Newstead
      Jan 18 at 19:26
















    4












    4








    4





    $begingroup$

    Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.






    share|cite|improve this answer









    $endgroup$



    Hint: If $n=qm+r$, then $a^n-1 = a^r(a^{qm} - 1) + (a^r - 1)$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 18 at 19:21









    Clive NewsteadClive Newstead

    51.6k474135




    51.6k474135








    • 1




      $begingroup$
      Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
      $endgroup$
      – M. A. SARKAR
      Jan 18 at 19:24






    • 2




      $begingroup$
      @M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
      $endgroup$
      – Clive Newstead
      Jan 18 at 19:26
















    • 1




      $begingroup$
      Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
      $endgroup$
      – M. A. SARKAR
      Jan 18 at 19:24






    • 2




      $begingroup$
      @M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
      $endgroup$
      – Clive Newstead
      Jan 18 at 19:26










    1




    1




    $begingroup$
    Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
    $endgroup$
    – M. A. SARKAR
    Jan 18 at 19:24




    $begingroup$
    Is $a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ cdots +a^{m(q-1})$ true? I mean how to show that $a^m-1$ divides $a^{qm}-1$. Is it true?
    $endgroup$
    – M. A. SARKAR
    Jan 18 at 19:24




    2




    2




    $begingroup$
    @M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
    $endgroup$
    – Clive Newstead
    Jan 18 at 19:26






    $begingroup$
    @M.A.SARKAR: Yes that is true. It immediately shows that $a^m-1$ divides $a^{qm}-1$, since you've expressed $a^{qm}-1$ as $a^m-1$ multiplied by an integer. It follows from the fact that $$x^n-1 = (x-1)(1+x+x^2+cdots+x^{n-1})$$ with $x=a^m$ and $n=q$.
    $endgroup$
    – Clive Newstead
    Jan 18 at 19:26













    1












    $begingroup$

    $bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$



    i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      $bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$



      i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        $bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$



        i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$






        share|cite|improve this answer











        $endgroup$



        $bmod, color{#c00}{a^{large m}!-!1}!:, a^{large r+mq}!= a^{large r} (color{#c00}{a^{large m}})^{large q}!equiv a^{large r} color{#c00}1^{q}!equiv a^{large r}$



        i.e. if $ a^{large m}equiv 1$ then $, a^{large n}!equiv a^{large nbmod m},,$ i.e. $ $ expts on $,a,$ can be reduced $!bmod m$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 18 at 22:07

























        answered Jan 18 at 21:59









        Bill DubuqueBill Dubuque

        210k29192645




        210k29192645






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078640%2fshow-that-the-remainder-upon-dividing-an-1-by-am-1-is-ar-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?