Is the squared difference between a $L^{2}$-function and a Non-$L^{2}$-function in $L^{2}$?












1












$begingroup$


Let $(Omega, mathcal{A}, P)$ be a probability space. Furthermore, let $Y,V : Omega rightarrow mathbb{R}^n$ be random vectors and let



$$ int_{Omega}{vert vert Y vert vert ^2}dP < infty$$
and
$$ int_{Omega}{vert vert V vert vert ^2}dP = infty.$$ Is it true that this implies



$$ int_{Omega}{vert vert V-Y vert vert ^2}dP = infty?$$



It seems intuitive, but I have a hard time showing it rigorously.



Thanks for any help!










share|cite|improve this question









$endgroup$












  • $begingroup$
    The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
    $endgroup$
    – Yanko
    Jan 18 at 20:17










  • $begingroup$
    I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
    $endgroup$
    – Joker123
    Jan 24 at 18:41


















1












$begingroup$


Let $(Omega, mathcal{A}, P)$ be a probability space. Furthermore, let $Y,V : Omega rightarrow mathbb{R}^n$ be random vectors and let



$$ int_{Omega}{vert vert Y vert vert ^2}dP < infty$$
and
$$ int_{Omega}{vert vert V vert vert ^2}dP = infty.$$ Is it true that this implies



$$ int_{Omega}{vert vert V-Y vert vert ^2}dP = infty?$$



It seems intuitive, but I have a hard time showing it rigorously.



Thanks for any help!










share|cite|improve this question









$endgroup$












  • $begingroup$
    The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
    $endgroup$
    – Yanko
    Jan 18 at 20:17










  • $begingroup$
    I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
    $endgroup$
    – Joker123
    Jan 24 at 18:41
















1












1








1





$begingroup$


Let $(Omega, mathcal{A}, P)$ be a probability space. Furthermore, let $Y,V : Omega rightarrow mathbb{R}^n$ be random vectors and let



$$ int_{Omega}{vert vert Y vert vert ^2}dP < infty$$
and
$$ int_{Omega}{vert vert V vert vert ^2}dP = infty.$$ Is it true that this implies



$$ int_{Omega}{vert vert V-Y vert vert ^2}dP = infty?$$



It seems intuitive, but I have a hard time showing it rigorously.



Thanks for any help!










share|cite|improve this question









$endgroup$




Let $(Omega, mathcal{A}, P)$ be a probability space. Furthermore, let $Y,V : Omega rightarrow mathbb{R}^n$ be random vectors and let



$$ int_{Omega}{vert vert Y vert vert ^2}dP < infty$$
and
$$ int_{Omega}{vert vert V vert vert ^2}dP = infty.$$ Is it true that this implies



$$ int_{Omega}{vert vert V-Y vert vert ^2}dP = infty?$$



It seems intuitive, but I have a hard time showing it rigorously.



Thanks for any help!







integration probability-theory lebesgue-integral lp-spaces






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 18 at 19:53









Joker123Joker123

527212




527212












  • $begingroup$
    The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
    $endgroup$
    – Yanko
    Jan 18 at 20:17










  • $begingroup$
    I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
    $endgroup$
    – Joker123
    Jan 24 at 18:41




















  • $begingroup$
    The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
    $endgroup$
    – Yanko
    Jan 18 at 20:17










  • $begingroup$
    I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
    $endgroup$
    – Joker123
    Jan 24 at 18:41


















$begingroup$
The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
$endgroup$
– Yanko
Jan 18 at 20:17




$begingroup$
The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
$endgroup$
– Yanko
Jan 18 at 20:17












$begingroup$
I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
$endgroup$
– Joker123
Jan 24 at 18:41






$begingroup$
I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
$endgroup$
– Joker123
Jan 24 at 18:41












1 Answer
1






active

oldest

votes


















2












$begingroup$

Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you! Can you elaborate on the second inequality?
    $endgroup$
    – Joker123
    Jan 18 at 22:01










  • $begingroup$
    Because I feel the leading factor should be 2 and not 4.
    $endgroup$
    – Joker123
    Jan 18 at 22:03






  • 1




    $begingroup$
    @Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
    $endgroup$
    – Rhys Steele
    Jan 18 at 22:56










  • $begingroup$
    Thank you for your help!
    $endgroup$
    – Joker123
    Jan 19 at 15:04











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078683%2fis-the-squared-difference-between-a-l2-function-and-a-non-l2-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you! Can you elaborate on the second inequality?
    $endgroup$
    – Joker123
    Jan 18 at 22:01










  • $begingroup$
    Because I feel the leading factor should be 2 and not 4.
    $endgroup$
    – Joker123
    Jan 18 at 22:03






  • 1




    $begingroup$
    @Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
    $endgroup$
    – Rhys Steele
    Jan 18 at 22:56










  • $begingroup$
    Thank you for your help!
    $endgroup$
    – Joker123
    Jan 19 at 15:04
















2












$begingroup$

Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you! Can you elaborate on the second inequality?
    $endgroup$
    – Joker123
    Jan 18 at 22:01










  • $begingroup$
    Because I feel the leading factor should be 2 and not 4.
    $endgroup$
    – Joker123
    Jan 18 at 22:03






  • 1




    $begingroup$
    @Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
    $endgroup$
    – Rhys Steele
    Jan 18 at 22:56










  • $begingroup$
    Thank you for your help!
    $endgroup$
    – Joker123
    Jan 19 at 15:04














2












2








2





$begingroup$

Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.






share|cite|improve this answer









$endgroup$



Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 18 at 19:58









Rhys SteeleRhys Steele

6,5851829




6,5851829












  • $begingroup$
    Thank you! Can you elaborate on the second inequality?
    $endgroup$
    – Joker123
    Jan 18 at 22:01










  • $begingroup$
    Because I feel the leading factor should be 2 and not 4.
    $endgroup$
    – Joker123
    Jan 18 at 22:03






  • 1




    $begingroup$
    @Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
    $endgroup$
    – Rhys Steele
    Jan 18 at 22:56










  • $begingroup$
    Thank you for your help!
    $endgroup$
    – Joker123
    Jan 19 at 15:04


















  • $begingroup$
    Thank you! Can you elaborate on the second inequality?
    $endgroup$
    – Joker123
    Jan 18 at 22:01










  • $begingroup$
    Because I feel the leading factor should be 2 and not 4.
    $endgroup$
    – Joker123
    Jan 18 at 22:03






  • 1




    $begingroup$
    @Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
    $endgroup$
    – Rhys Steele
    Jan 18 at 22:56










  • $begingroup$
    Thank you for your help!
    $endgroup$
    – Joker123
    Jan 19 at 15:04
















$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01




$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01












$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03




$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03




1




1




$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56




$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56












$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04




$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078683%2fis-the-squared-difference-between-a-l2-function-and-a-non-l2-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?