Is the squared difference between a $L^{2}$-function and a Non-$L^{2}$-function in $L^{2}$?
$begingroup$
Let $(Omega, mathcal{A}, P)$ be a probability space. Furthermore, let $Y,V : Omega rightarrow mathbb{R}^n$ be random vectors and let
$$ int_{Omega}{vert vert Y vert vert ^2}dP < infty$$
and
$$ int_{Omega}{vert vert V vert vert ^2}dP = infty.$$ Is it true that this implies
$$ int_{Omega}{vert vert V-Y vert vert ^2}dP = infty?$$
It seems intuitive, but I have a hard time showing it rigorously.
Thanks for any help!
integration probability-theory lebesgue-integral lp-spaces
$endgroup$
add a comment |
$begingroup$
Let $(Omega, mathcal{A}, P)$ be a probability space. Furthermore, let $Y,V : Omega rightarrow mathbb{R}^n$ be random vectors and let
$$ int_{Omega}{vert vert Y vert vert ^2}dP < infty$$
and
$$ int_{Omega}{vert vert V vert vert ^2}dP = infty.$$ Is it true that this implies
$$ int_{Omega}{vert vert V-Y vert vert ^2}dP = infty?$$
It seems intuitive, but I have a hard time showing it rigorously.
Thanks for any help!
integration probability-theory lebesgue-integral lp-spaces
$endgroup$
$begingroup$
The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
$endgroup$
– Yanko
Jan 18 at 20:17
$begingroup$
I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
$endgroup$
– Joker123
Jan 24 at 18:41
add a comment |
$begingroup$
Let $(Omega, mathcal{A}, P)$ be a probability space. Furthermore, let $Y,V : Omega rightarrow mathbb{R}^n$ be random vectors and let
$$ int_{Omega}{vert vert Y vert vert ^2}dP < infty$$
and
$$ int_{Omega}{vert vert V vert vert ^2}dP = infty.$$ Is it true that this implies
$$ int_{Omega}{vert vert V-Y vert vert ^2}dP = infty?$$
It seems intuitive, but I have a hard time showing it rigorously.
Thanks for any help!
integration probability-theory lebesgue-integral lp-spaces
$endgroup$
Let $(Omega, mathcal{A}, P)$ be a probability space. Furthermore, let $Y,V : Omega rightarrow mathbb{R}^n$ be random vectors and let
$$ int_{Omega}{vert vert Y vert vert ^2}dP < infty$$
and
$$ int_{Omega}{vert vert V vert vert ^2}dP = infty.$$ Is it true that this implies
$$ int_{Omega}{vert vert V-Y vert vert ^2}dP = infty?$$
It seems intuitive, but I have a hard time showing it rigorously.
Thanks for any help!
integration probability-theory lebesgue-integral lp-spaces
integration probability-theory lebesgue-integral lp-spaces
asked Jan 18 at 19:53
Joker123Joker123
527212
527212
$begingroup$
The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
$endgroup$
– Yanko
Jan 18 at 20:17
$begingroup$
I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
$endgroup$
– Joker123
Jan 24 at 18:41
add a comment |
$begingroup$
The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
$endgroup$
– Yanko
Jan 18 at 20:17
$begingroup$
I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
$endgroup$
– Joker123
Jan 24 at 18:41
$begingroup$
The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
$endgroup$
– Yanko
Jan 18 at 20:17
$begingroup$
The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
$endgroup$
– Yanko
Jan 18 at 20:17
$begingroup$
I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
$endgroup$
– Joker123
Jan 24 at 18:41
$begingroup$
I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
$endgroup$
– Joker123
Jan 24 at 18:41
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.
$endgroup$
$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01
$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03
1
$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56
$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078683%2fis-the-squared-difference-between-a-l2-function-and-a-non-l2-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.
$endgroup$
$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01
$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03
1
$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56
$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04
add a comment |
$begingroup$
Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.
$endgroup$
$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01
$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03
1
$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56
$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04
add a comment |
$begingroup$
Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.
$endgroup$
Notice that $|V| leq |V-Y| + |Y|$ (by the triangle inequality) and so
$$int |V|^2 leq int (|V-Y| + |Y|)^2 leq 4 int |V-Y|^2 + |Y|^2$$
so if $int |V-Y|^2 < infty$ then $int |V|^2 < infty$, a contradiction.
answered Jan 18 at 19:58
Rhys SteeleRhys Steele
6,5851829
6,5851829
$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01
$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03
1
$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56
$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04
add a comment |
$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01
$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03
1
$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56
$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04
$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01
$begingroup$
Thank you! Can you elaborate on the second inequality?
$endgroup$
– Joker123
Jan 18 at 22:01
$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03
$begingroup$
Because I feel the leading factor should be 2 and not 4.
$endgroup$
– Joker123
Jan 18 at 22:03
1
1
$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56
$begingroup$
@Joker123 yeah, it works with $2$. I just stuck the inefficient bound you get by writing $(a+b)^2 leq (2 max(a,b))^2 leq 4 (a^2+b^2)$.
$endgroup$
– Rhys Steele
Jan 18 at 22:56
$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04
$begingroup$
Thank you for your help!
$endgroup$
– Joker123
Jan 19 at 15:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078683%2fis-the-squared-difference-between-a-l2-function-and-a-non-l2-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The use of $| cdot |$ is weird. I would use $left| cdot right|$ instead.
$endgroup$
– Yanko
Jan 18 at 20:17
$begingroup$
I used $lVert . rVert$ since the exercise is about random vectors and not scalars.
$endgroup$
– Joker123
Jan 24 at 18:41