Reparametrization of a circle












0












$begingroup$


Let $,mathbf{x}longrightarrowmathbb{R}^2,$ and $,mathbf{y}:Jlongrightarrowmathbb{R}^2;$ be two parametrizations of a circle, given by
$$mathbf{x}left(thetaright)=left(costheta,,sinthetaright)qquadmathbf{y}left(tright)=left(frac{1-t^2}{1+t^2},,frac{2t}{1+t^2}right)$$
I am asked to find a relation between both parameters $,left(right.$i.e a dipheomorphism $,f:Ilongrightarrow J,$ that verifies $,mathbf{x}=mathbf{y}circ fleft.right)$





After different attempts, I tried setting $,textrm{tg}left(frac{theta}{2}right),$ and it seems to be a right change of variables. However, it was just luck.



Question: Is there a specific method for this kind of exercise?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Please specify the extremes of the intervals $ I $ and $ J $.
    $endgroup$
    – MathOverview
    Jan 18 at 23:03










  • $begingroup$
    @MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
    $endgroup$
    – CarlIO
    Jan 21 at 10:13
















0












$begingroup$


Let $,mathbf{x}longrightarrowmathbb{R}^2,$ and $,mathbf{y}:Jlongrightarrowmathbb{R}^2;$ be two parametrizations of a circle, given by
$$mathbf{x}left(thetaright)=left(costheta,,sinthetaright)qquadmathbf{y}left(tright)=left(frac{1-t^2}{1+t^2},,frac{2t}{1+t^2}right)$$
I am asked to find a relation between both parameters $,left(right.$i.e a dipheomorphism $,f:Ilongrightarrow J,$ that verifies $,mathbf{x}=mathbf{y}circ fleft.right)$





After different attempts, I tried setting $,textrm{tg}left(frac{theta}{2}right),$ and it seems to be a right change of variables. However, it was just luck.



Question: Is there a specific method for this kind of exercise?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Please specify the extremes of the intervals $ I $ and $ J $.
    $endgroup$
    – MathOverview
    Jan 18 at 23:03










  • $begingroup$
    @MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
    $endgroup$
    – CarlIO
    Jan 21 at 10:13














0












0








0





$begingroup$


Let $,mathbf{x}longrightarrowmathbb{R}^2,$ and $,mathbf{y}:Jlongrightarrowmathbb{R}^2;$ be two parametrizations of a circle, given by
$$mathbf{x}left(thetaright)=left(costheta,,sinthetaright)qquadmathbf{y}left(tright)=left(frac{1-t^2}{1+t^2},,frac{2t}{1+t^2}right)$$
I am asked to find a relation between both parameters $,left(right.$i.e a dipheomorphism $,f:Ilongrightarrow J,$ that verifies $,mathbf{x}=mathbf{y}circ fleft.right)$





After different attempts, I tried setting $,textrm{tg}left(frac{theta}{2}right),$ and it seems to be a right change of variables. However, it was just luck.



Question: Is there a specific method for this kind of exercise?










share|cite|improve this question









$endgroup$




Let $,mathbf{x}longrightarrowmathbb{R}^2,$ and $,mathbf{y}:Jlongrightarrowmathbb{R}^2;$ be two parametrizations of a circle, given by
$$mathbf{x}left(thetaright)=left(costheta,,sinthetaright)qquadmathbf{y}left(tright)=left(frac{1-t^2}{1+t^2},,frac{2t}{1+t^2}right)$$
I am asked to find a relation between both parameters $,left(right.$i.e a dipheomorphism $,f:Ilongrightarrow J,$ that verifies $,mathbf{x}=mathbf{y}circ fleft.right)$





After different attempts, I tried setting $,textrm{tg}left(frac{theta}{2}right),$ and it seems to be a right change of variables. However, it was just luck.



Question: Is there a specific method for this kind of exercise?







differential-geometry parametrization






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 18 at 19:25









CarlIOCarlIO

957




957












  • $begingroup$
    Please specify the extremes of the intervals $ I $ and $ J $.
    $endgroup$
    – MathOverview
    Jan 18 at 23:03










  • $begingroup$
    @MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
    $endgroup$
    – CarlIO
    Jan 21 at 10:13


















  • $begingroup$
    Please specify the extremes of the intervals $ I $ and $ J $.
    $endgroup$
    – MathOverview
    Jan 18 at 23:03










  • $begingroup$
    @MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
    $endgroup$
    – CarlIO
    Jan 21 at 10:13
















$begingroup$
Please specify the extremes of the intervals $ I $ and $ J $.
$endgroup$
– MathOverview
Jan 18 at 23:03




$begingroup$
Please specify the extremes of the intervals $ I $ and $ J $.
$endgroup$
– MathOverview
Jan 18 at 23:03












$begingroup$
@MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
$endgroup$
– CarlIO
Jan 21 at 10:13




$begingroup$
@MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
$endgroup$
– CarlIO
Jan 21 at 10:13










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078648%2freparametrization-of-a-circle%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078648%2freparametrization-of-a-circle%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?