Reparametrization of a circle
$begingroup$
Let $,mathbf{x}longrightarrowmathbb{R}^2,$ and $,mathbf{y}:Jlongrightarrowmathbb{R}^2;$ be two parametrizations of a circle, given by
$$mathbf{x}left(thetaright)=left(costheta,,sinthetaright)qquadmathbf{y}left(tright)=left(frac{1-t^2}{1+t^2},,frac{2t}{1+t^2}right)$$
I am asked to find a relation between both parameters $,left(right.$i.e a dipheomorphism $,f:Ilongrightarrow J,$ that verifies $,mathbf{x}=mathbf{y}circ fleft.right)$
After different attempts, I tried setting $,textrm{tg}left(frac{theta}{2}right),$ and it seems to be a right change of variables. However, it was just luck.
Question: Is there a specific method for this kind of exercise?
differential-geometry parametrization
$endgroup$
add a comment |
$begingroup$
Let $,mathbf{x}longrightarrowmathbb{R}^2,$ and $,mathbf{y}:Jlongrightarrowmathbb{R}^2;$ be two parametrizations of a circle, given by
$$mathbf{x}left(thetaright)=left(costheta,,sinthetaright)qquadmathbf{y}left(tright)=left(frac{1-t^2}{1+t^2},,frac{2t}{1+t^2}right)$$
I am asked to find a relation between both parameters $,left(right.$i.e a dipheomorphism $,f:Ilongrightarrow J,$ that verifies $,mathbf{x}=mathbf{y}circ fleft.right)$
After different attempts, I tried setting $,textrm{tg}left(frac{theta}{2}right),$ and it seems to be a right change of variables. However, it was just luck.
Question: Is there a specific method for this kind of exercise?
differential-geometry parametrization
$endgroup$
$begingroup$
Please specify the extremes of the intervals $ I $ and $ J $.
$endgroup$
– MathOverview
Jan 18 at 23:03
$begingroup$
@MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
$endgroup$
– CarlIO
Jan 21 at 10:13
add a comment |
$begingroup$
Let $,mathbf{x}longrightarrowmathbb{R}^2,$ and $,mathbf{y}:Jlongrightarrowmathbb{R}^2;$ be two parametrizations of a circle, given by
$$mathbf{x}left(thetaright)=left(costheta,,sinthetaright)qquadmathbf{y}left(tright)=left(frac{1-t^2}{1+t^2},,frac{2t}{1+t^2}right)$$
I am asked to find a relation between both parameters $,left(right.$i.e a dipheomorphism $,f:Ilongrightarrow J,$ that verifies $,mathbf{x}=mathbf{y}circ fleft.right)$
After different attempts, I tried setting $,textrm{tg}left(frac{theta}{2}right),$ and it seems to be a right change of variables. However, it was just luck.
Question: Is there a specific method for this kind of exercise?
differential-geometry parametrization
$endgroup$
Let $,mathbf{x}longrightarrowmathbb{R}^2,$ and $,mathbf{y}:Jlongrightarrowmathbb{R}^2;$ be two parametrizations of a circle, given by
$$mathbf{x}left(thetaright)=left(costheta,,sinthetaright)qquadmathbf{y}left(tright)=left(frac{1-t^2}{1+t^2},,frac{2t}{1+t^2}right)$$
I am asked to find a relation between both parameters $,left(right.$i.e a dipheomorphism $,f:Ilongrightarrow J,$ that verifies $,mathbf{x}=mathbf{y}circ fleft.right)$
After different attempts, I tried setting $,textrm{tg}left(frac{theta}{2}right),$ and it seems to be a right change of variables. However, it was just luck.
Question: Is there a specific method for this kind of exercise?
differential-geometry parametrization
differential-geometry parametrization
asked Jan 18 at 19:25
CarlIOCarlIO
957
957
$begingroup$
Please specify the extremes of the intervals $ I $ and $ J $.
$endgroup$
– MathOverview
Jan 18 at 23:03
$begingroup$
@MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
$endgroup$
– CarlIO
Jan 21 at 10:13
add a comment |
$begingroup$
Please specify the extremes of the intervals $ I $ and $ J $.
$endgroup$
– MathOverview
Jan 18 at 23:03
$begingroup$
@MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
$endgroup$
– CarlIO
Jan 21 at 10:13
$begingroup$
Please specify the extremes of the intervals $ I $ and $ J $.
$endgroup$
– MathOverview
Jan 18 at 23:03
$begingroup$
Please specify the extremes of the intervals $ I $ and $ J $.
$endgroup$
– MathOverview
Jan 18 at 23:03
$begingroup$
@MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
$endgroup$
– CarlIO
Jan 21 at 10:13
$begingroup$
@MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
$endgroup$
– CarlIO
Jan 21 at 10:13
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078648%2freparametrization-of-a-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078648%2freparametrization-of-a-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Please specify the extremes of the intervals $ I $ and $ J $.
$endgroup$
– MathOverview
Jan 18 at 23:03
$begingroup$
@MathOverview: They are not defined. I guess I=[0,2π) and J an interval which allows to draw the whole circle.
$endgroup$
– CarlIO
Jan 21 at 10:13