Proving that $sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr}$.












0












$begingroup$


I want to prove the following identity: if $A$ is a $3times 3$ matrix, then
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr},$$
where $varepsilon$ is the Levi-Civita symbol.



I know that (Leibniz formula)
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{1i}a_{2j}a_{3k}=det(A).$$
However I cant see why
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{pqr}varepsilon_{ijk}a_{1i}a_{2j}a_{3k}.$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    @daw fixed. Thanks
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 21:53
















0












$begingroup$


I want to prove the following identity: if $A$ is a $3times 3$ matrix, then
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr},$$
where $varepsilon$ is the Levi-Civita symbol.



I know that (Leibniz formula)
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{1i}a_{2j}a_{3k}=det(A).$$
However I cant see why
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{pqr}varepsilon_{ijk}a_{1i}a_{2j}a_{3k}.$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    @daw fixed. Thanks
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 21:53














0












0








0


0



$begingroup$


I want to prove the following identity: if $A$ is a $3times 3$ matrix, then
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr},$$
where $varepsilon$ is the Levi-Civita symbol.



I know that (Leibniz formula)
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{1i}a_{2j}a_{3k}=det(A).$$
However I cant see why
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{pqr}varepsilon_{ijk}a_{1i}a_{2j}a_{3k}.$$










share|cite|improve this question











$endgroup$




I want to prove the following identity: if $A$ is a $3times 3$ matrix, then
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr},$$
where $varepsilon$ is the Levi-Civita symbol.



I know that (Leibniz formula)
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{1i}a_{2j}a_{3k}=det(A).$$
However I cant see why
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{pqr}varepsilon_{ijk}a_{1i}a_{2j}a_{3k}.$$







linear-algebra differential-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 21:52







Gabriel Ribeiro

















asked Jan 18 at 12:25









Gabriel RibeiroGabriel Ribeiro

1,451522




1,451522












  • $begingroup$
    @daw fixed. Thanks
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 21:53


















  • $begingroup$
    @daw fixed. Thanks
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 21:53
















$begingroup$
@daw fixed. Thanks
$endgroup$
– Gabriel Ribeiro
Jan 18 at 21:53




$begingroup$
@daw fixed. Thanks
$endgroup$
– Gabriel Ribeiro
Jan 18 at 21:53










1 Answer
1






active

oldest

votes


















1












$begingroup$

It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 13:04










  • $begingroup$
    @GabrielRibeiro exactly :)
    $endgroup$
    – Botond
    Jan 18 at 13:23











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078182%2fproving-that-sum-i-13-sum-j-13-sum-k-13-varepsilon-ijka-pia-qja%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 13:04










  • $begingroup$
    @GabrielRibeiro exactly :)
    $endgroup$
    – Botond
    Jan 18 at 13:23
















1












$begingroup$

It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 13:04










  • $begingroup$
    @GabrielRibeiro exactly :)
    $endgroup$
    – Botond
    Jan 18 at 13:23














1












1








1





$begingroup$

It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?






share|cite|improve this answer









$endgroup$



It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 18 at 12:42









BotondBotond

5,8182832




5,8182832












  • $begingroup$
    If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 13:04










  • $begingroup$
    @GabrielRibeiro exactly :)
    $endgroup$
    – Botond
    Jan 18 at 13:23


















  • $begingroup$
    If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
    $endgroup$
    – Gabriel Ribeiro
    Jan 18 at 13:04










  • $begingroup$
    @GabrielRibeiro exactly :)
    $endgroup$
    – Botond
    Jan 18 at 13:23
















$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04




$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04












$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23




$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078182%2fproving-that-sum-i-13-sum-j-13-sum-k-13-varepsilon-ijka-pia-qja%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?