$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)…(s+n)}$ , the product formula of Gamma function .
Multi tool use
$begingroup$
Prove that $$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)...(s+n)}$$
Whenever $s neq 0,-1,-2,...$
My attempt :
By applying product formula for $frac{1}{Gamma}$ ,
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}e^{s(1+frac12+...+frac1n-gamma)}$$
Notice that $1+frac12+...+frac1n-gammato log n$ , so it seems that we then get the desired conclusion . But whenever $Re(s)gt0$ , $n^s to infty$ , we can not have
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}lim_{nto infty} e^{s(1+frac12+...+frac1n-gamma)}$$
Let $A(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}n^s$ , I want to prove this exercise by showing the following statement.
1) $A(s)$ defines a meromorphic function with simple poles at $0,-1,-2,...$ and nowhere else.
2)$A(s)=Gamma (s)$ whenever $s in (frac14,frac13)$ .
To show 2) , we need some estimate of $gamma$ ,
$$sum_{n=1}^N frac1n-log N =sum_{n=1}^{N-1}int_n^{n+1} frac1n-frac1x ,dx +frac1N$$ Then we may write $a_n=int_n^{n+1} frac1n-frac1x ,dx $ and $gamma=sum_1^{infty}a_n$ . Moreover , $a_n le frac{1}{n(n+1)}$
Notice that whenever $sin (frac14,frac13)$ , $frac{n!}{s(s+1)...(s+n)}$ is bounded by some fixed $M$ .
$$Gamma(s)-A(s)le Mlim_{nto infty} |e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|$$
apple mean-value theorem we have $$|e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|le s|1+frac12+...+frac1n-gamma-log n||e^{s*2 log n}|$$
$$le sn^{frac23} |sum_{k=n}^{infty} a_k+frac1n|le sn^{frac23} |sum_{k=n}^{infty} frac{1}{k(k+1)}+frac1n|le frac{2sn^{frac23}}{n} to 0$$
And we complete the proof of 2) . To prove 1) , we need to prove that for every compact subset $Omega$ of $C-{0,-1,-2,...}$ , $f_n=frac{n!}{s(s+1)...(s+n)}n^s$ converges uniformly . I have no idea how to deal with this .
complex-analysis gamma-function
$endgroup$
add a comment |
$begingroup$
Prove that $$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)...(s+n)}$$
Whenever $s neq 0,-1,-2,...$
My attempt :
By applying product formula for $frac{1}{Gamma}$ ,
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}e^{s(1+frac12+...+frac1n-gamma)}$$
Notice that $1+frac12+...+frac1n-gammato log n$ , so it seems that we then get the desired conclusion . But whenever $Re(s)gt0$ , $n^s to infty$ , we can not have
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}lim_{nto infty} e^{s(1+frac12+...+frac1n-gamma)}$$
Let $A(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}n^s$ , I want to prove this exercise by showing the following statement.
1) $A(s)$ defines a meromorphic function with simple poles at $0,-1,-2,...$ and nowhere else.
2)$A(s)=Gamma (s)$ whenever $s in (frac14,frac13)$ .
To show 2) , we need some estimate of $gamma$ ,
$$sum_{n=1}^N frac1n-log N =sum_{n=1}^{N-1}int_n^{n+1} frac1n-frac1x ,dx +frac1N$$ Then we may write $a_n=int_n^{n+1} frac1n-frac1x ,dx $ and $gamma=sum_1^{infty}a_n$ . Moreover , $a_n le frac{1}{n(n+1)}$
Notice that whenever $sin (frac14,frac13)$ , $frac{n!}{s(s+1)...(s+n)}$ is bounded by some fixed $M$ .
$$Gamma(s)-A(s)le Mlim_{nto infty} |e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|$$
apple mean-value theorem we have $$|e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|le s|1+frac12+...+frac1n-gamma-log n||e^{s*2 log n}|$$
$$le sn^{frac23} |sum_{k=n}^{infty} a_k+frac1n|le sn^{frac23} |sum_{k=n}^{infty} frac{1}{k(k+1)}+frac1n|le frac{2sn^{frac23}}{n} to 0$$
And we complete the proof of 2) . To prove 1) , we need to prove that for every compact subset $Omega$ of $C-{0,-1,-2,...}$ , $f_n=frac{n!}{s(s+1)...(s+n)}n^s$ converges uniformly . I have no idea how to deal with this .
complex-analysis gamma-function
$endgroup$
$begingroup$
Definition of $Gamma$ you are using?
$endgroup$
– Simply Beautiful Art
Jan 18 at 15:13
$begingroup$
@ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
$endgroup$
– J.Guo
Jan 18 at 15:33
add a comment |
$begingroup$
Prove that $$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)...(s+n)}$$
Whenever $s neq 0,-1,-2,...$
My attempt :
By applying product formula for $frac{1}{Gamma}$ ,
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}e^{s(1+frac12+...+frac1n-gamma)}$$
Notice that $1+frac12+...+frac1n-gammato log n$ , so it seems that we then get the desired conclusion . But whenever $Re(s)gt0$ , $n^s to infty$ , we can not have
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}lim_{nto infty} e^{s(1+frac12+...+frac1n-gamma)}$$
Let $A(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}n^s$ , I want to prove this exercise by showing the following statement.
1) $A(s)$ defines a meromorphic function with simple poles at $0,-1,-2,...$ and nowhere else.
2)$A(s)=Gamma (s)$ whenever $s in (frac14,frac13)$ .
To show 2) , we need some estimate of $gamma$ ,
$$sum_{n=1}^N frac1n-log N =sum_{n=1}^{N-1}int_n^{n+1} frac1n-frac1x ,dx +frac1N$$ Then we may write $a_n=int_n^{n+1} frac1n-frac1x ,dx $ and $gamma=sum_1^{infty}a_n$ . Moreover , $a_n le frac{1}{n(n+1)}$
Notice that whenever $sin (frac14,frac13)$ , $frac{n!}{s(s+1)...(s+n)}$ is bounded by some fixed $M$ .
$$Gamma(s)-A(s)le Mlim_{nto infty} |e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|$$
apple mean-value theorem we have $$|e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|le s|1+frac12+...+frac1n-gamma-log n||e^{s*2 log n}|$$
$$le sn^{frac23} |sum_{k=n}^{infty} a_k+frac1n|le sn^{frac23} |sum_{k=n}^{infty} frac{1}{k(k+1)}+frac1n|le frac{2sn^{frac23}}{n} to 0$$
And we complete the proof of 2) . To prove 1) , we need to prove that for every compact subset $Omega$ of $C-{0,-1,-2,...}$ , $f_n=frac{n!}{s(s+1)...(s+n)}n^s$ converges uniformly . I have no idea how to deal with this .
complex-analysis gamma-function
$endgroup$
Prove that $$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)...(s+n)}$$
Whenever $s neq 0,-1,-2,...$
My attempt :
By applying product formula for $frac{1}{Gamma}$ ,
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}e^{s(1+frac12+...+frac1n-gamma)}$$
Notice that $1+frac12+...+frac1n-gammato log n$ , so it seems that we then get the desired conclusion . But whenever $Re(s)gt0$ , $n^s to infty$ , we can not have
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}lim_{nto infty} e^{s(1+frac12+...+frac1n-gamma)}$$
Let $A(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}n^s$ , I want to prove this exercise by showing the following statement.
1) $A(s)$ defines a meromorphic function with simple poles at $0,-1,-2,...$ and nowhere else.
2)$A(s)=Gamma (s)$ whenever $s in (frac14,frac13)$ .
To show 2) , we need some estimate of $gamma$ ,
$$sum_{n=1}^N frac1n-log N =sum_{n=1}^{N-1}int_n^{n+1} frac1n-frac1x ,dx +frac1N$$ Then we may write $a_n=int_n^{n+1} frac1n-frac1x ,dx $ and $gamma=sum_1^{infty}a_n$ . Moreover , $a_n le frac{1}{n(n+1)}$
Notice that whenever $sin (frac14,frac13)$ , $frac{n!}{s(s+1)...(s+n)}$ is bounded by some fixed $M$ .
$$Gamma(s)-A(s)le Mlim_{nto infty} |e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|$$
apple mean-value theorem we have $$|e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|le s|1+frac12+...+frac1n-gamma-log n||e^{s*2 log n}|$$
$$le sn^{frac23} |sum_{k=n}^{infty} a_k+frac1n|le sn^{frac23} |sum_{k=n}^{infty} frac{1}{k(k+1)}+frac1n|le frac{2sn^{frac23}}{n} to 0$$
And we complete the proof of 2) . To prove 1) , we need to prove that for every compact subset $Omega$ of $C-{0,-1,-2,...}$ , $f_n=frac{n!}{s(s+1)...(s+n)}n^s$ converges uniformly . I have no idea how to deal with this .
complex-analysis gamma-function
complex-analysis gamma-function
edited Jan 18 at 13:04
José Carlos Santos
161k22127232
161k22127232
asked Jan 18 at 13:02
J.GuoJ.Guo
3759
3759
$begingroup$
Definition of $Gamma$ you are using?
$endgroup$
– Simply Beautiful Art
Jan 18 at 15:13
$begingroup$
@ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
$endgroup$
– J.Guo
Jan 18 at 15:33
add a comment |
$begingroup$
Definition of $Gamma$ you are using?
$endgroup$
– Simply Beautiful Art
Jan 18 at 15:13
$begingroup$
@ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
$endgroup$
– J.Guo
Jan 18 at 15:33
$begingroup$
Definition of $Gamma$ you are using?
$endgroup$
– Simply Beautiful Art
Jan 18 at 15:13
$begingroup$
Definition of $Gamma$ you are using?
$endgroup$
– Simply Beautiful Art
Jan 18 at 15:13
$begingroup$
@ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
$endgroup$
– J.Guo
Jan 18 at 15:33
$begingroup$
@ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
$endgroup$
– J.Guo
Jan 18 at 15:33
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
A much more straightforward proof from the given definition for $Re(s)>0$:
$$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$
begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}
The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
=
Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
end{align}
$endgroup$
add a comment |
$begingroup$
To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that
$$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$
where the last equality follows from
$$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$
Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.
We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have
$$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$
Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.
$endgroup$
$begingroup$
Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
$endgroup$
– J.Guo
Jan 19 at 12:17
$begingroup$
@J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
$endgroup$
– RRL
Jan 20 at 2:47
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078221%2fgammas-lim-n-to-infty-fracns-nss1-sn-the-product-for%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A much more straightforward proof from the given definition for $Re(s)>0$:
$$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$
begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}
The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.
$endgroup$
add a comment |
$begingroup$
A much more straightforward proof from the given definition for $Re(s)>0$:
$$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$
begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}
The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.
$endgroup$
add a comment |
$begingroup$
A much more straightforward proof from the given definition for $Re(s)>0$:
$$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$
begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}
The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.
$endgroup$
A much more straightforward proof from the given definition for $Re(s)>0$:
$$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$
begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}
The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.
answered Jan 19 at 2:23
Simply Beautiful ArtSimply Beautiful Art
50.5k578182
50.5k578182
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
=
Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
=
Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
=
Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
\[5mm] = &
Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
=
Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
end{align}
edited Jan 19 at 17:31
answered Jan 19 at 4:20
Felix MarinFelix Marin
68k7107142
68k7107142
add a comment |
add a comment |
$begingroup$
To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that
$$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$
where the last equality follows from
$$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$
Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.
We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have
$$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$
Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.
$endgroup$
$begingroup$
Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
$endgroup$
– J.Guo
Jan 19 at 12:17
$begingroup$
@J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
$endgroup$
– RRL
Jan 20 at 2:47
add a comment |
$begingroup$
To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that
$$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$
where the last equality follows from
$$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$
Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.
We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have
$$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$
Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.
$endgroup$
$begingroup$
Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
$endgroup$
– J.Guo
Jan 19 at 12:17
$begingroup$
@J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
$endgroup$
– RRL
Jan 20 at 2:47
add a comment |
$begingroup$
To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that
$$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$
where the last equality follows from
$$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$
Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.
We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have
$$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$
Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.
$endgroup$
To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that
$$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$
where the last equality follows from
$$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$
Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.
We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have
$$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$
Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.
edited Jan 20 at 2:45
answered Jan 19 at 5:07
RRLRRL
51.2k42573
51.2k42573
$begingroup$
Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
$endgroup$
– J.Guo
Jan 19 at 12:17
$begingroup$
@J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
$endgroup$
– RRL
Jan 20 at 2:47
add a comment |
$begingroup$
Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
$endgroup$
– J.Guo
Jan 19 at 12:17
$begingroup$
@J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
$endgroup$
– RRL
Jan 20 at 2:47
$begingroup$
Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
$endgroup$
– J.Guo
Jan 19 at 12:17
$begingroup$
Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
$endgroup$
– J.Guo
Jan 19 at 12:17
$begingroup$
@J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
$endgroup$
– RRL
Jan 20 at 2:47
$begingroup$
@J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
$endgroup$
– RRL
Jan 20 at 2:47
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078221%2fgammas-lim-n-to-infty-fracns-nss1-sn-the-product-for%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
saXMRjnkmZAbpI6Xo bBnOb
$begingroup$
Definition of $Gamma$ you are using?
$endgroup$
– Simply Beautiful Art
Jan 18 at 15:13
$begingroup$
@ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
$endgroup$
– J.Guo
Jan 18 at 15:33