$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)…(s+n)}$ , the product formula of Gamma function .

Multi tool use
Multi tool use












2












$begingroup$



Prove that $$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)...(s+n)}$$
Whenever $s neq 0,-1,-2,...$




My attempt :

By applying product formula for $frac{1}{Gamma}$ ,
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}e^{s(1+frac12+...+frac1n-gamma)}$$
Notice that $1+frac12+...+frac1n-gammato log n$ , so it seems that we then get the desired conclusion . But whenever $Re(s)gt0$ , $n^s to infty$ , we can not have
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}lim_{nto infty} e^{s(1+frac12+...+frac1n-gamma)}$$

Let $A(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}n^s$ , I want to prove this exercise by showing the following statement.

1) $A(s)$ defines a meromorphic function with simple poles at $0,-1,-2,...$ and nowhere else.

2)$A(s)=Gamma (s)$ whenever $s in (frac14,frac13)$ .



To show 2) , we need some estimate of $gamma$ ,
$$sum_{n=1}^N frac1n-log N =sum_{n=1}^{N-1}int_n^{n+1} frac1n-frac1x ,dx +frac1N$$ Then we may write $a_n=int_n^{n+1} frac1n-frac1x ,dx $ and $gamma=sum_1^{infty}a_n$ . Moreover , $a_n le frac{1}{n(n+1)}$

Notice that whenever $sin (frac14,frac13)$ , $frac{n!}{s(s+1)...(s+n)}$ is bounded by some fixed $M$ .
$$Gamma(s)-A(s)le Mlim_{nto infty} |e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|$$
apple mean-value theorem we have $$|e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|le s|1+frac12+...+frac1n-gamma-log n||e^{s*2 log n}|$$
$$le sn^{frac23} |sum_{k=n}^{infty} a_k+frac1n|le sn^{frac23} |sum_{k=n}^{infty} frac{1}{k(k+1)}+frac1n|le frac{2sn^{frac23}}{n} to 0$$
And we complete the proof of 2) . To prove 1) , we need to prove that for every compact subset $Omega$ of $C-{0,-1,-2,...}$ , $f_n=frac{n!}{s(s+1)...(s+n)}n^s$ converges uniformly . I have no idea how to deal with this .










share|cite|improve this question











$endgroup$












  • $begingroup$
    Definition of $Gamma$ you are using?
    $endgroup$
    – Simply Beautiful Art
    Jan 18 at 15:13










  • $begingroup$
    @ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
    $endgroup$
    – J.Guo
    Jan 18 at 15:33
















2












$begingroup$



Prove that $$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)...(s+n)}$$
Whenever $s neq 0,-1,-2,...$




My attempt :

By applying product formula for $frac{1}{Gamma}$ ,
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}e^{s(1+frac12+...+frac1n-gamma)}$$
Notice that $1+frac12+...+frac1n-gammato log n$ , so it seems that we then get the desired conclusion . But whenever $Re(s)gt0$ , $n^s to infty$ , we can not have
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}lim_{nto infty} e^{s(1+frac12+...+frac1n-gamma)}$$

Let $A(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}n^s$ , I want to prove this exercise by showing the following statement.

1) $A(s)$ defines a meromorphic function with simple poles at $0,-1,-2,...$ and nowhere else.

2)$A(s)=Gamma (s)$ whenever $s in (frac14,frac13)$ .



To show 2) , we need some estimate of $gamma$ ,
$$sum_{n=1}^N frac1n-log N =sum_{n=1}^{N-1}int_n^{n+1} frac1n-frac1x ,dx +frac1N$$ Then we may write $a_n=int_n^{n+1} frac1n-frac1x ,dx $ and $gamma=sum_1^{infty}a_n$ . Moreover , $a_n le frac{1}{n(n+1)}$

Notice that whenever $sin (frac14,frac13)$ , $frac{n!}{s(s+1)...(s+n)}$ is bounded by some fixed $M$ .
$$Gamma(s)-A(s)le Mlim_{nto infty} |e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|$$
apple mean-value theorem we have $$|e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|le s|1+frac12+...+frac1n-gamma-log n||e^{s*2 log n}|$$
$$le sn^{frac23} |sum_{k=n}^{infty} a_k+frac1n|le sn^{frac23} |sum_{k=n}^{infty} frac{1}{k(k+1)}+frac1n|le frac{2sn^{frac23}}{n} to 0$$
And we complete the proof of 2) . To prove 1) , we need to prove that for every compact subset $Omega$ of $C-{0,-1,-2,...}$ , $f_n=frac{n!}{s(s+1)...(s+n)}n^s$ converges uniformly . I have no idea how to deal with this .










share|cite|improve this question











$endgroup$












  • $begingroup$
    Definition of $Gamma$ you are using?
    $endgroup$
    – Simply Beautiful Art
    Jan 18 at 15:13










  • $begingroup$
    @ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
    $endgroup$
    – J.Guo
    Jan 18 at 15:33














2












2








2


1



$begingroup$



Prove that $$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)...(s+n)}$$
Whenever $s neq 0,-1,-2,...$




My attempt :

By applying product formula for $frac{1}{Gamma}$ ,
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}e^{s(1+frac12+...+frac1n-gamma)}$$
Notice that $1+frac12+...+frac1n-gammato log n$ , so it seems that we then get the desired conclusion . But whenever $Re(s)gt0$ , $n^s to infty$ , we can not have
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}lim_{nto infty} e^{s(1+frac12+...+frac1n-gamma)}$$

Let $A(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}n^s$ , I want to prove this exercise by showing the following statement.

1) $A(s)$ defines a meromorphic function with simple poles at $0,-1,-2,...$ and nowhere else.

2)$A(s)=Gamma (s)$ whenever $s in (frac14,frac13)$ .



To show 2) , we need some estimate of $gamma$ ,
$$sum_{n=1}^N frac1n-log N =sum_{n=1}^{N-1}int_n^{n+1} frac1n-frac1x ,dx +frac1N$$ Then we may write $a_n=int_n^{n+1} frac1n-frac1x ,dx $ and $gamma=sum_1^{infty}a_n$ . Moreover , $a_n le frac{1}{n(n+1)}$

Notice that whenever $sin (frac14,frac13)$ , $frac{n!}{s(s+1)...(s+n)}$ is bounded by some fixed $M$ .
$$Gamma(s)-A(s)le Mlim_{nto infty} |e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|$$
apple mean-value theorem we have $$|e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|le s|1+frac12+...+frac1n-gamma-log n||e^{s*2 log n}|$$
$$le sn^{frac23} |sum_{k=n}^{infty} a_k+frac1n|le sn^{frac23} |sum_{k=n}^{infty} frac{1}{k(k+1)}+frac1n|le frac{2sn^{frac23}}{n} to 0$$
And we complete the proof of 2) . To prove 1) , we need to prove that for every compact subset $Omega$ of $C-{0,-1,-2,...}$ , $f_n=frac{n!}{s(s+1)...(s+n)}n^s$ converges uniformly . I have no idea how to deal with this .










share|cite|improve this question











$endgroup$





Prove that $$Gamma(s)= lim_{n to infty} frac{n^s n!}{s(s+1)...(s+n)}$$
Whenever $s neq 0,-1,-2,...$




My attempt :

By applying product formula for $frac{1}{Gamma}$ ,
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}e^{s(1+frac12+...+frac1n-gamma)}$$
Notice that $1+frac12+...+frac1n-gammato log n$ , so it seems that we then get the desired conclusion . But whenever $Re(s)gt0$ , $n^s to infty$ , we can not have
$$Gamma(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}lim_{nto infty} e^{s(1+frac12+...+frac1n-gamma)}$$

Let $A(s)=lim_{nto infty} frac{n!}{s(s+1)...(s+n)}n^s$ , I want to prove this exercise by showing the following statement.

1) $A(s)$ defines a meromorphic function with simple poles at $0,-1,-2,...$ and nowhere else.

2)$A(s)=Gamma (s)$ whenever $s in (frac14,frac13)$ .



To show 2) , we need some estimate of $gamma$ ,
$$sum_{n=1}^N frac1n-log N =sum_{n=1}^{N-1}int_n^{n+1} frac1n-frac1x ,dx +frac1N$$ Then we may write $a_n=int_n^{n+1} frac1n-frac1x ,dx $ and $gamma=sum_1^{infty}a_n$ . Moreover , $a_n le frac{1}{n(n+1)}$

Notice that whenever $sin (frac14,frac13)$ , $frac{n!}{s(s+1)...(s+n)}$ is bounded by some fixed $M$ .
$$Gamma(s)-A(s)le Mlim_{nto infty} |e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|$$
apple mean-value theorem we have $$|e^{s(1+frac12+...+frac1n-gamma)}-e^{s log n}|le s|1+frac12+...+frac1n-gamma-log n||e^{s*2 log n}|$$
$$le sn^{frac23} |sum_{k=n}^{infty} a_k+frac1n|le sn^{frac23} |sum_{k=n}^{infty} frac{1}{k(k+1)}+frac1n|le frac{2sn^{frac23}}{n} to 0$$
And we complete the proof of 2) . To prove 1) , we need to prove that for every compact subset $Omega$ of $C-{0,-1,-2,...}$ , $f_n=frac{n!}{s(s+1)...(s+n)}n^s$ converges uniformly . I have no idea how to deal with this .







complex-analysis gamma-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 13:04









José Carlos Santos

161k22127232




161k22127232










asked Jan 18 at 13:02









J.GuoJ.Guo

3759




3759












  • $begingroup$
    Definition of $Gamma$ you are using?
    $endgroup$
    – Simply Beautiful Art
    Jan 18 at 15:13










  • $begingroup$
    @ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
    $endgroup$
    – J.Guo
    Jan 18 at 15:33


















  • $begingroup$
    Definition of $Gamma$ you are using?
    $endgroup$
    – Simply Beautiful Art
    Jan 18 at 15:13










  • $begingroup$
    @ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
    $endgroup$
    – J.Guo
    Jan 18 at 15:33
















$begingroup$
Definition of $Gamma$ you are using?
$endgroup$
– Simply Beautiful Art
Jan 18 at 15:13




$begingroup$
Definition of $Gamma$ you are using?
$endgroup$
– Simply Beautiful Art
Jan 18 at 15:13












$begingroup$
@ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
$endgroup$
– J.Guo
Jan 18 at 15:33




$begingroup$
@ Simply Beautiful Art $Gamma_0(s)=int_0^{infty}e^{-t} t^{s-1} , dt$ whenever $Re(s)gt0$ and $Gamma(s)$ is the Analytic continuaton of $Gamma_0$ which defined a meromorphic function on $C$ .
$endgroup$
– J.Guo
Jan 18 at 15:33










3 Answers
3






active

oldest

votes


















2












$begingroup$

A much more straightforward proof from the given definition for $Re(s)>0$:



$$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$



begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}



The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$

    begin{align}
    &bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
    lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
    lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
    \[5mm] = &
    Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
    \[5mm] = &
    Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
    expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
    \[5mm] = &
    Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
    n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
    =
    Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
    Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
    end{align}






    share|cite|improve this answer











    $endgroup$





















      1












      $begingroup$

      To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that



      $$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$



      where the last equality follows from



      $$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$



      Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.



      We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have



      $$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$



      Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
        $endgroup$
        – J.Guo
        Jan 19 at 12:17












      • $begingroup$
        @J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
        $endgroup$
        – RRL
        Jan 20 at 2:47











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078221%2fgammas-lim-n-to-infty-fracns-nss1-sn-the-product-for%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      A much more straightforward proof from the given definition for $Re(s)>0$:



      $$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$



      begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}



      The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        A much more straightforward proof from the given definition for $Re(s)>0$:



        $$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$



        begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}



        The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          A much more straightforward proof from the given definition for $Re(s)>0$:



          $$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$



          begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}



          The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.






          share|cite|improve this answer









          $endgroup$



          A much more straightforward proof from the given definition for $Re(s)>0$:



          $$f_n(t):=begin{cases}0,&t>n\left(1-frac tnright)^n,&0le tle nend{cases}$$



          begin{align}Gamma(s):!&=int_0^infty t^{s-1}e^{-t}~mathrm dt\&=lim_{ntoinfty}int_0^infty t^{s-1}f_n(t)~mathrm dttag{DCT}\&=lim_{ntoinfty}int_0^nt^{s-1}f_n(t)~mathrm dt\&=lim_{ntoinfty}int_0^nt^{s-1}left(1-frac tnright)^n~mathrm dt\&=lim_{ntoinfty}n^sint_0^1u^{s-1}left(1-uright)^n~mathrm dutag{$t=nu$}\&=lim_{ntoinfty}n^sprod_{k=1}^nfrac k{k+s-1}tag{Induction over $n$}end{align}



          The last expression being your limit in product form. One can then verify the last form to satisfy the recursive equation $Gamma(s+1)=sGamma(s)$ and hence extends to $Re(s)le0$ as the Gamma function.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 19 at 2:23









          Simply Beautiful ArtSimply Beautiful Art

          50.5k578182




          50.5k578182























              1












              $begingroup$

              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
              newcommand{dd}{mathrm{d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,mathrm{e}^{#1},}
              newcommand{ic}{mathrm{i}}
              newcommand{mc}[1]{mathcal{#1}}
              newcommand{mrm}[1]{mathrm{#1}}
              newcommand{pars}[1]{left(,{#1},right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
              newcommand{verts}[1]{leftvert,{#1},rightvert}$

              begin{align}
              &bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
              lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
              lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
              \[5mm] = &
              Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
              \[5mm] = &
              Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
              expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
              \[5mm] = &
              Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
              n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
              =
              Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
              Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
              end{align}






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$

                begin{align}
                &bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
                lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
                lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
                \[5mm] = &
                Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
                \[5mm] = &
                Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
                expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
                \[5mm] = &
                Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
                n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
                =
                Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
                Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
                end{align}






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                  newcommand{dd}{mathrm{d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                  newcommand{ic}{mathrm{i}}
                  newcommand{mc}[1]{mathcal{#1}}
                  newcommand{mrm}[1]{mathrm{#1}}
                  newcommand{pars}[1]{left(,{#1},right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                  newcommand{verts}[1]{leftvert,{#1},rightvert}$

                  begin{align}
                  &bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
                  lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
                  lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
                  \[5mm] = &
                  Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
                  \[5mm] = &
                  Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
                  expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
                  \[5mm] = &
                  Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
                  n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
                  =
                  Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
                  Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
                  end{align}






                  share|cite|improve this answer











                  $endgroup$



                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                  newcommand{dd}{mathrm{d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                  newcommand{ic}{mathrm{i}}
                  newcommand{mc}[1]{mathcal{#1}}
                  newcommand{mrm}[1]{mathrm{#1}}
                  newcommand{pars}[1]{left(,{#1},right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                  newcommand{verts}[1]{leftvert,{#1},rightvert}$

                  begin{align}
                  &bbox[10px,#ffd]{lim_{n to infty}{n^{s}, n! over spars{s + 1}ldotspars{s + n}}} =
                  lim_{n to infty}{n^{s}, n! over s^{overline{n + 1}}} =
                  lim_{n to infty}{n^{s}, n! over Gammapars{s + n + 1}/Gammapars{s}}
                  \[5mm] = &
                  Gammapars{s}lim_{n to infty}{n^{s}, n! over pars{s + n}!}
                  \[5mm] = &
                  Gammapars{s}lim_{n to infty}{n^{s}bracks{root{2pi}n^{n + 1/2}expo{-n}} over root{2pi}pars{n + s}^{n + s + 1/2}
                  expo{-pars{n + s}}}qquadpars{~Stirling Asymptotic~}
                  \[5mm] = &
                  Gammapars{s}lim_{n to infty}{n^{s + n + 1/2},expo{s} over
                  n^{n + s 1/2},pars{1 + s/n}^{n + s + 1/2}}
                  =
                  Gammapars{s}lim_{n to infty}{expo{s} over pars{1 + s/n}^{n}} \[5mm] = &
                  Gammapars{s},{expo{s} over expo{s}} = bbx{Gammapars{s}}
                  end{align}







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 19 at 17:31

























                  answered Jan 19 at 4:20









                  Felix MarinFelix Marin

                  68k7107142




                  68k7107142























                      1












                      $begingroup$

                      To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that



                      $$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$



                      where the last equality follows from



                      $$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$



                      Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.



                      We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have



                      $$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$



                      Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
                        $endgroup$
                        – J.Guo
                        Jan 19 at 12:17












                      • $begingroup$
                        @J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
                        $endgroup$
                        – RRL
                        Jan 20 at 2:47
















                      1












                      $begingroup$

                      To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that



                      $$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$



                      where the last equality follows from



                      $$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$



                      Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.



                      We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have



                      $$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$



                      Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
                        $endgroup$
                        – J.Guo
                        Jan 19 at 12:17












                      • $begingroup$
                        @J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
                        $endgroup$
                        – RRL
                        Jan 20 at 2:47














                      1












                      1








                      1





                      $begingroup$

                      To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that



                      $$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$



                      where the last equality follows from



                      $$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$



                      Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.



                      We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have



                      $$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$



                      Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.






                      share|cite|improve this answer











                      $endgroup$



                      To prove uniform convergence of $f_n$ on a compact set $Omega in mathbb{C} setminus {0,-1,-2,ldots}$ note that



                      $$tag{*}f_n(s) = frac{n^s n!}{s(s+1)...(s+n)} = frac{n^s}{s} prod_{k=1}^n left(1 + frac{s}{k} right)^{-1} \ = left(frac{n}{n+1} right)^s frac{1}{s}prod_{k=1}^n left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} $$



                      where the last equality follows from



                      $$prod_{k=1}^n left(1 + frac{1}{k} right)^{s} = left[ prod_{k=1}^n left(frac{k+1}{k}right) right]^s = left(frac{(n+1)!}{n!}right)^s = (n+1)^s$$



                      Since $frac{1}{2} leqslant frac{n}{n+1} < 1$ it can be shown that $left(frac{n}{n+1} right)^s frac{1}{s}$ is uniformly bounded on $Omega$. Thus, uniform convergence of $f_n$ holds if the product on the RHS of (*) is uniformly convergent.



                      We can apply a general theorem for complex infinite products that states that the product $prod [1 + g_n(s)]$ is uniformly and absolutely convergent on a compact set if $sum |g_n(s)|$ is uniformly convergent. This holds here because for large $K$ we have



                      $$left(1 + frac{1}{k} right)^{s}left(1 + frac{s}{k} right)^{-1} = 1 + frac{s((s-1)}{2k^2} + mathcal{O}(k^{-3})$$



                      Thus, the product on the RHS of (*) and, consequently $f_n$ are uniformly convergent on the compact set $Omega$ that avoids singularities of the gamma function.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 20 at 2:45

























                      answered Jan 19 at 5:07









                      RRLRRL

                      51.2k42573




                      51.2k42573












                      • $begingroup$
                        Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
                        $endgroup$
                        – J.Guo
                        Jan 19 at 12:17












                      • $begingroup$
                        @J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
                        $endgroup$
                        – RRL
                        Jan 20 at 2:47


















                      • $begingroup$
                        Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
                        $endgroup$
                        – J.Guo
                        Jan 19 at 12:17












                      • $begingroup$
                        @J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
                        $endgroup$
                        – RRL
                        Jan 20 at 2:47
















                      $begingroup$
                      Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
                      $endgroup$
                      – J.Guo
                      Jan 19 at 12:17






                      $begingroup$
                      Here $s$ is a complex variable , so we can not have $log (ab) = log (a) + log (b) $ , then how to deduce that $log f_n(s) = -log s - underbrace{sleft(sum_{k=1}^nfrac{1}{k} - log nright)}_{A_n(s)} -underbrace{sum_{k=1}^nleft[log left(1 + frac{s}{k}right)- frac{s}{k} right]}_{B_n(s)}$
                      $endgroup$
                      – J.Guo
                      Jan 19 at 12:17














                      $begingroup$
                      @J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
                      $endgroup$
                      – RRL
                      Jan 20 at 2:47




                      $begingroup$
                      @J.Guo: You are absolutely correct but that technicality can be avoided as shown in the revised answer proving uniform convergence. That should provide the piece you are missing.
                      $endgroup$
                      – RRL
                      Jan 20 at 2:47


















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078221%2fgammas-lim-n-to-infty-fracns-nss1-sn-the-product-for%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      saXMRjnkmZAbpI6Xo bBnOb
                      8FQ6jqeaAFJu5B5nwAQ IP8A puyviK,brd6y

                      Popular posts from this blog

                      The Binding of Isaac: Rebirth/Afterbirth

                      Mario Kart Wii

                      Dobbiaco