Integral of $frac{x^2}{sqrt{x^2+5}}$
$begingroup$
I need help with this integral:
$$I = int frac{x^2}{sqrt{x^2+5}}, dx$$
I substituted $x = sqrt{5}tan{theta}$, and reached $$I = 5int frac{sin{(theta)}^2}{cos{(theta)}^3},dtheta$$ which I'm unable to solve.
For context this is in an exercise of trig substitution, and I'm not allowed to use the secant reduction formula which WolframAlpha suggests I use.
calculus integration trigonometry
$endgroup$
add a comment |
$begingroup$
I need help with this integral:
$$I = int frac{x^2}{sqrt{x^2+5}}, dx$$
I substituted $x = sqrt{5}tan{theta}$, and reached $$I = 5int frac{sin{(theta)}^2}{cos{(theta)}^3},dtheta$$ which I'm unable to solve.
For context this is in an exercise of trig substitution, and I'm not allowed to use the secant reduction formula which WolframAlpha suggests I use.
calculus integration trigonometry
$endgroup$
add a comment |
$begingroup$
I need help with this integral:
$$I = int frac{x^2}{sqrt{x^2+5}}, dx$$
I substituted $x = sqrt{5}tan{theta}$, and reached $$I = 5int frac{sin{(theta)}^2}{cos{(theta)}^3},dtheta$$ which I'm unable to solve.
For context this is in an exercise of trig substitution, and I'm not allowed to use the secant reduction formula which WolframAlpha suggests I use.
calculus integration trigonometry
$endgroup$
I need help with this integral:
$$I = int frac{x^2}{sqrt{x^2+5}}, dx$$
I substituted $x = sqrt{5}tan{theta}$, and reached $$I = 5int frac{sin{(theta)}^2}{cos{(theta)}^3},dtheta$$ which I'm unable to solve.
For context this is in an exercise of trig substitution, and I'm not allowed to use the secant reduction formula which WolframAlpha suggests I use.
calculus integration trigonometry
calculus integration trigonometry
edited Jan 18 at 13:28
Robert Z
97.4k1066137
97.4k1066137
asked Jan 18 at 12:55
Yizhar AmirYizhar Amir
4216
4216
add a comment |
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Hint: (Use hyperbolic trigonometric substitution to)
$$
frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
$$
$endgroup$
add a comment |
$begingroup$
Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.
$endgroup$
$begingroup$
This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
$endgroup$
– GEdgar
Jan 18 at 13:08
add a comment |
$begingroup$
Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
$$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
Finally note that $t=x+sqrt{x^2+5}$.
$endgroup$
add a comment |
$begingroup$
Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.
$endgroup$
add a comment |
$begingroup$
Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.
$endgroup$
add a comment |
$begingroup$
What about
$$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$
$$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$
$$intleft(5sinh^2u-10sinh u+1right)du$$
and now it is almost an immediate integral.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078210%2fintegral-of-fracx2-sqrtx25%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: (Use hyperbolic trigonometric substitution to)
$$
frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
$$
$endgroup$
add a comment |
$begingroup$
Hint: (Use hyperbolic trigonometric substitution to)
$$
frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
$$
$endgroup$
add a comment |
$begingroup$
Hint: (Use hyperbolic trigonometric substitution to)
$$
frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
$$
$endgroup$
Hint: (Use hyperbolic trigonometric substitution to)
$$
frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
$$
answered Jan 18 at 12:59
SongSong
12.9k631
12.9k631
add a comment |
add a comment |
$begingroup$
Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.
$endgroup$
$begingroup$
This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
$endgroup$
– GEdgar
Jan 18 at 13:08
add a comment |
$begingroup$
Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.
$endgroup$
$begingroup$
This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
$endgroup$
– GEdgar
Jan 18 at 13:08
add a comment |
$begingroup$
Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.
$endgroup$
Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.
answered Jan 18 at 13:03
José Carlos SantosJosé Carlos Santos
161k22127232
161k22127232
$begingroup$
This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
$endgroup$
– GEdgar
Jan 18 at 13:08
add a comment |
$begingroup$
This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
$endgroup$
– GEdgar
Jan 18 at 13:08
$begingroup$
This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
$endgroup$
– GEdgar
Jan 18 at 13:08
$begingroup$
This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
$endgroup$
– GEdgar
Jan 18 at 13:08
add a comment |
$begingroup$
Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
$$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
Finally note that $t=x+sqrt{x^2+5}$.
$endgroup$
add a comment |
$begingroup$
Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
$$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
Finally note that $t=x+sqrt{x^2+5}$.
$endgroup$
add a comment |
$begingroup$
Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
$$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
Finally note that $t=x+sqrt{x^2+5}$.
$endgroup$
Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
$$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
Finally note that $t=x+sqrt{x^2+5}$.
edited Jan 18 at 13:26
answered Jan 18 at 13:08
Robert ZRobert Z
97.4k1066137
97.4k1066137
add a comment |
add a comment |
$begingroup$
Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.
$endgroup$
add a comment |
$begingroup$
Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.
$endgroup$
add a comment |
$begingroup$
Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.
$endgroup$
Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.
answered Jan 18 at 13:43
bjcolby15bjcolby15
1,36711016
1,36711016
add a comment |
add a comment |
$begingroup$
Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.
$endgroup$
add a comment |
$begingroup$
Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.
$endgroup$
add a comment |
$begingroup$
Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.
$endgroup$
Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.
answered Jan 18 at 13:01
A. PongráczA. Pongrácz
5,9531929
5,9531929
add a comment |
add a comment |
$begingroup$
What about
$$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$
$$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$
$$intleft(5sinh^2u-10sinh u+1right)du$$
and now it is almost an immediate integral.
$endgroup$
add a comment |
$begingroup$
What about
$$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$
$$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$
$$intleft(5sinh^2u-10sinh u+1right)du$$
and now it is almost an immediate integral.
$endgroup$
add a comment |
$begingroup$
What about
$$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$
$$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$
$$intleft(5sinh^2u-10sinh u+1right)du$$
and now it is almost an immediate integral.
$endgroup$
What about
$$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$
$$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$
$$intleft(5sinh^2u-10sinh u+1right)du$$
and now it is almost an immediate integral.
answered Jan 18 at 13:03
DonAntonioDonAntonio
178k1494230
178k1494230
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078210%2fintegral-of-fracx2-sqrtx25%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown