Integral of $frac{x^2}{sqrt{x^2+5}}$












1












$begingroup$


I need help with this integral:



$$I = int frac{x^2}{sqrt{x^2+5}}, dx$$



I substituted $x = sqrt{5}tan{theta}$, and reached $$I = 5int frac{sin{(theta)}^2}{cos{(theta)}^3},dtheta$$ which I'm unable to solve.
For context this is in an exercise of trig substitution, and I'm not allowed to use the secant reduction formula which WolframAlpha suggests I use.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I need help with this integral:



    $$I = int frac{x^2}{sqrt{x^2+5}}, dx$$



    I substituted $x = sqrt{5}tan{theta}$, and reached $$I = 5int frac{sin{(theta)}^2}{cos{(theta)}^3},dtheta$$ which I'm unable to solve.
    For context this is in an exercise of trig substitution, and I'm not allowed to use the secant reduction formula which WolframAlpha suggests I use.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I need help with this integral:



      $$I = int frac{x^2}{sqrt{x^2+5}}, dx$$



      I substituted $x = sqrt{5}tan{theta}$, and reached $$I = 5int frac{sin{(theta)}^2}{cos{(theta)}^3},dtheta$$ which I'm unable to solve.
      For context this is in an exercise of trig substitution, and I'm not allowed to use the secant reduction formula which WolframAlpha suggests I use.










      share|cite|improve this question











      $endgroup$




      I need help with this integral:



      $$I = int frac{x^2}{sqrt{x^2+5}}, dx$$



      I substituted $x = sqrt{5}tan{theta}$, and reached $$I = 5int frac{sin{(theta)}^2}{cos{(theta)}^3},dtheta$$ which I'm unable to solve.
      For context this is in an exercise of trig substitution, and I'm not allowed to use the secant reduction formula which WolframAlpha suggests I use.







      calculus integration trigonometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 18 at 13:28









      Robert Z

      97.4k1066137




      97.4k1066137










      asked Jan 18 at 12:55









      Yizhar AmirYizhar Amir

      4216




      4216






















          6 Answers
          6






          active

          oldest

          votes


















          3












          $begingroup$

          Hint: (Use hyperbolic trigonometric substitution to)
          $$
          frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
          $$






          share|cite|improve this answer









          $endgroup$





















            3












            $begingroup$

            Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
              $endgroup$
              – GEdgar
              Jan 18 at 13:08



















            2












            $begingroup$

            Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
            $$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
            Finally note that $t=x+sqrt{x^2+5}$.






            share|cite|improve this answer











            $endgroup$





















              1












              $begingroup$

              Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.






                share|cite|improve this answer









                $endgroup$





















                  0












                  $begingroup$

                  What about



                  $$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$



                  $$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$



                  $$intleft(5sinh^2u-10sinh u+1right)du$$



                  and now it is almost an immediate integral.






                  share|cite|improve this answer









                  $endgroup$













                    Your Answer





                    StackExchange.ifUsing("editor", function () {
                    return StackExchange.using("mathjaxEditing", function () {
                    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                    });
                    });
                    }, "mathjax-editing");

                    StackExchange.ready(function() {
                    var channelOptions = {
                    tags: "".split(" "),
                    id: "69"
                    };
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function() {
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled) {
                    StackExchange.using("snippets", function() {
                    createEditor();
                    });
                    }
                    else {
                    createEditor();
                    }
                    });

                    function createEditor() {
                    StackExchange.prepareEditor({
                    heartbeatType: 'answer',
                    autoActivateHeartbeat: false,
                    convertImagesToLinks: true,
                    noModals: true,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    imageUploader: {
                    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                    allowUrls: true
                    },
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    });


                    }
                    });














                    draft saved

                    draft discarded


















                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078210%2fintegral-of-fracx2-sqrtx25%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown

























                    6 Answers
                    6






                    active

                    oldest

                    votes








                    6 Answers
                    6






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes









                    3












                    $begingroup$

                    Hint: (Use hyperbolic trigonometric substitution to)
                    $$
                    frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
                    $$






                    share|cite|improve this answer









                    $endgroup$


















                      3












                      $begingroup$

                      Hint: (Use hyperbolic trigonometric substitution to)
                      $$
                      frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
                      $$






                      share|cite|improve this answer









                      $endgroup$
















                        3












                        3








                        3





                        $begingroup$

                        Hint: (Use hyperbolic trigonometric substitution to)
                        $$
                        frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
                        $$






                        share|cite|improve this answer









                        $endgroup$



                        Hint: (Use hyperbolic trigonometric substitution to)
                        $$
                        frac{x^2}{sqrt{x^2+5}}=sqrt{x^2+5}-frac{5}{sqrt{x^2+5}}.
                        $$







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Jan 18 at 12:59









                        SongSong

                        12.9k631




                        12.9k631























                            3












                            $begingroup$

                            Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.






                            share|cite|improve this answer









                            $endgroup$













                            • $begingroup$
                              This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
                              $endgroup$
                              – GEdgar
                              Jan 18 at 13:08
















                            3












                            $begingroup$

                            Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.






                            share|cite|improve this answer









                            $endgroup$













                            • $begingroup$
                              This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
                              $endgroup$
                              – GEdgar
                              Jan 18 at 13:08














                            3












                            3








                            3





                            $begingroup$

                            Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.






                            share|cite|improve this answer









                            $endgroup$



                            Note that$$frac{sin^2(theta)}{cos^3(theta)}=frac{sin^2(theta)cos(theta)}{bigl(1-sin^2(theta)bigr)^2}.$$So, you can do $sin(theta)=u$ and $cos(theta),mathrm dtheta=mathrm du$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 18 at 13:03









                            José Carlos SantosJosé Carlos Santos

                            161k22127232




                            161k22127232












                            • $begingroup$
                              This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
                              $endgroup$
                              – GEdgar
                              Jan 18 at 13:08


















                            • $begingroup$
                              This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
                              $endgroup$
                              – GEdgar
                              Jan 18 at 13:08
















                            $begingroup$
                            This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
                            $endgroup$
                            – GEdgar
                            Jan 18 at 13:08




                            $begingroup$
                            This method works when you have power of $sin$ times power of $cos$ where at least one of the exponents is odd.
                            $endgroup$
                            – GEdgar
                            Jan 18 at 13:08











                            2












                            $begingroup$

                            Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
                            $$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
                            Finally note that $t=x+sqrt{x^2+5}$.






                            share|cite|improve this answer











                            $endgroup$


















                              2












                              $begingroup$

                              Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
                              $$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
                              Finally note that $t=x+sqrt{x^2+5}$.






                              share|cite|improve this answer











                              $endgroup$
















                                2












                                2








                                2





                                $begingroup$

                                Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
                                $$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
                                Finally note that $t=x+sqrt{x^2+5}$.






                                share|cite|improve this answer











                                $endgroup$



                                Hint. Let $t$ such that $x^2+5=(x-t)^2$, that is $x=(t^2-5)/(2t)$. Then new integral is the integral of a rational function (very easy to calculate):
                                $$int frac{x^2}{sqrt{x^2+5}}, dx=int left(frac{25}{4t^3}+frac{t}{4}-frac{5}{2t}right), dt.$$
                                Finally note that $t=x+sqrt{x^2+5}$.







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Jan 18 at 13:26

























                                answered Jan 18 at 13:08









                                Robert ZRobert Z

                                97.4k1066137




                                97.4k1066137























                                    1












                                    $begingroup$

                                    Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.






                                    share|cite|improve this answer









                                    $endgroup$


















                                      1












                                      $begingroup$

                                      Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.






                                      share|cite|improve this answer









                                      $endgroup$
















                                        1












                                        1








                                        1





                                        $begingroup$

                                        Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.






                                        share|cite|improve this answer









                                        $endgroup$



                                        Hint: Rewrite $intfrac{sin^2{(theta)}}{cos^3{(theta)}} d theta$ as $int tan^2 theta sec theta d theta$. Let $u = sec theta$; then $du = ?$ - this will reduce the integral to something trivial.







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Jan 18 at 13:43









                                        bjcolby15bjcolby15

                                        1,36711016




                                        1,36711016























                                            0












                                            $begingroup$

                                            Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.






                                            share|cite|improve this answer









                                            $endgroup$


















                                              0












                                              $begingroup$

                                              Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.






                                              share|cite|improve this answer









                                              $endgroup$
















                                                0












                                                0








                                                0





                                                $begingroup$

                                                Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.






                                                share|cite|improve this answer









                                                $endgroup$



                                                Hint: Substitute $y=sqrt{x^2+5}$. Then $dy= frac{x}{sqrt{x^2+5}}dx$, so the integral is $int sqrt{y^2-5} dy$.







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Jan 18 at 13:01









                                                A. PongráczA. Pongrácz

                                                5,9531929




                                                5,9531929























                                                    0












                                                    $begingroup$

                                                    What about



                                                    $$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$



                                                    $$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$



                                                    $$intleft(5sinh^2u-10sinh u+1right)du$$



                                                    and now it is almost an immediate integral.






                                                    share|cite|improve this answer









                                                    $endgroup$


















                                                      0












                                                      $begingroup$

                                                      What about



                                                      $$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$



                                                      $$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$



                                                      $$intleft(5sinh^2u-10sinh u+1right)du$$



                                                      and now it is almost an immediate integral.






                                                      share|cite|improve this answer









                                                      $endgroup$
















                                                        0












                                                        0








                                                        0





                                                        $begingroup$

                                                        What about



                                                        $$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$



                                                        $$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$



                                                        $$intleft(5sinh^2u-10sinh u+1right)du$$



                                                        and now it is almost an immediate integral.






                                                        share|cite|improve this answer









                                                        $endgroup$



                                                        What about



                                                        $$1+frac x{sqrt5}=sinh uimplies dx=cosh usqrt 5,duimplies$$



                                                        $$intfrac{x^2}{sqrt{x^2+5}}==frac1{sqrt5}intfrac{x^2}{sqrt{1+left(frac x{sqrt 5}right)^2}}dx=frac1{sqrt5}intfrac{(sqrt5,sinh u-1)^2}{cosh u}sqrt5,cosh u,du=$$



                                                        $$intleft(5sinh^2u-10sinh u+1right)du$$



                                                        and now it is almost an immediate integral.







                                                        share|cite|improve this answer












                                                        share|cite|improve this answer



                                                        share|cite|improve this answer










                                                        answered Jan 18 at 13:03









                                                        DonAntonioDonAntonio

                                                        178k1494230




                                                        178k1494230






























                                                            draft saved

                                                            draft discarded




















































                                                            Thanks for contributing an answer to Mathematics Stack Exchange!


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid



                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.


                                                            Use MathJax to format equations. MathJax reference.


                                                            To learn more, see our tips on writing great answers.




                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function () {
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078210%2fintegral-of-fracx2-sqrtx25%23new-answer', 'question_page');
                                                            }
                                                            );

                                                            Post as a guest















                                                            Required, but never shown





















































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown

































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown







                                                            Popular posts from this blog

                                                            Mario Kart Wii

                                                            The Binding of Isaac: Rebirth/Afterbirth

                                                            What does “Dominus providebit” mean?