Intersection-exponent for one-dimensional Brownian motion












1












$begingroup$


We let $B^1,B^2$ be independent, one-dimensional Brownian Motions with $B^1(0)=-1$ and $B^2(0)=1$ and $T_n^i=inf{tgeq0:|B^i(t)|=n}$.



In Gregory Lawler's: Hausdorff Dimension of Cut-Points for Brownian Motion, it is claimed, that



$textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset} approx n^{-2}$



where for functions $f$ and $g$, $fapprox g $ means $lim_{nto infty}frac{ln f(n)}{ln g(n)}=1$.



Now I think, that in this case even



$lim_{ntoinfty}frac{textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset}}{n^{-2}}=1quad$ without the logarithms holds true.



Note that



$textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset}=textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq minlimits_{tin[0,T_n^2]}{B^2(t)}}$,



and we get an upper bound by the application of the Optional Stopping Theorem:



$textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq minlimits_{tin[0,T_n^2]}{B^2(t)}}leq textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq 1; minlimits_{tin[0,T_n^2]}{B^2(t)}leq -1}=(frac{1}{n+1})^2$.



However I am struggling with finding a lower bound. I was thinking to use the distribution of the maximum-process $M_t=minlimits_{0leq sleq t}{B(s)}$, but I was not successful so far.



Any help would be greatly appreciated!










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    We let $B^1,B^2$ be independent, one-dimensional Brownian Motions with $B^1(0)=-1$ and $B^2(0)=1$ and $T_n^i=inf{tgeq0:|B^i(t)|=n}$.



    In Gregory Lawler's: Hausdorff Dimension of Cut-Points for Brownian Motion, it is claimed, that



    $textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset} approx n^{-2}$



    where for functions $f$ and $g$, $fapprox g $ means $lim_{nto infty}frac{ln f(n)}{ln g(n)}=1$.



    Now I think, that in this case even



    $lim_{ntoinfty}frac{textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset}}{n^{-2}}=1quad$ without the logarithms holds true.



    Note that



    $textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset}=textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq minlimits_{tin[0,T_n^2]}{B^2(t)}}$,



    and we get an upper bound by the application of the Optional Stopping Theorem:



    $textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq minlimits_{tin[0,T_n^2]}{B^2(t)}}leq textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq 1; minlimits_{tin[0,T_n^2]}{B^2(t)}leq -1}=(frac{1}{n+1})^2$.



    However I am struggling with finding a lower bound. I was thinking to use the distribution of the maximum-process $M_t=minlimits_{0leq sleq t}{B(s)}$, but I was not successful so far.



    Any help would be greatly appreciated!










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      We let $B^1,B^2$ be independent, one-dimensional Brownian Motions with $B^1(0)=-1$ and $B^2(0)=1$ and $T_n^i=inf{tgeq0:|B^i(t)|=n}$.



      In Gregory Lawler's: Hausdorff Dimension of Cut-Points for Brownian Motion, it is claimed, that



      $textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset} approx n^{-2}$



      where for functions $f$ and $g$, $fapprox g $ means $lim_{nto infty}frac{ln f(n)}{ln g(n)}=1$.



      Now I think, that in this case even



      $lim_{ntoinfty}frac{textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset}}{n^{-2}}=1quad$ without the logarithms holds true.



      Note that



      $textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset}=textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq minlimits_{tin[0,T_n^2]}{B^2(t)}}$,



      and we get an upper bound by the application of the Optional Stopping Theorem:



      $textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq minlimits_{tin[0,T_n^2]}{B^2(t)}}leq textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq 1; minlimits_{tin[0,T_n^2]}{B^2(t)}leq -1}=(frac{1}{n+1})^2$.



      However I am struggling with finding a lower bound. I was thinking to use the distribution of the maximum-process $M_t=minlimits_{0leq sleq t}{B(s)}$, but I was not successful so far.



      Any help would be greatly appreciated!










      share|cite|improve this question











      $endgroup$




      We let $B^1,B^2$ be independent, one-dimensional Brownian Motions with $B^1(0)=-1$ and $B^2(0)=1$ and $T_n^i=inf{tgeq0:|B^i(t)|=n}$.



      In Gregory Lawler's: Hausdorff Dimension of Cut-Points for Brownian Motion, it is claimed, that



      $textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset} approx n^{-2}$



      where for functions $f$ and $g$, $fapprox g $ means $lim_{nto infty}frac{ln f(n)}{ln g(n)}=1$.



      Now I think, that in this case even



      $lim_{ntoinfty}frac{textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset}}{n^{-2}}=1quad$ without the logarithms holds true.



      Note that



      $textbf{P}{B^1[0,T_n^1]cap B^2[0,T_n^2]=emptyset}=textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq minlimits_{tin[0,T_n^2]}{B^2(t)}}$,



      and we get an upper bound by the application of the Optional Stopping Theorem:



      $textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq minlimits_{tin[0,T_n^2]}{B^2(t)}}leq textbf{P}{maxlimits_{tin[0,T_n^1]}{B^1(t)}leq 1; minlimits_{tin[0,T_n^2]}{B^2(t)}leq -1}=(frac{1}{n+1})^2$.



      However I am struggling with finding a lower bound. I was thinking to use the distribution of the maximum-process $M_t=minlimits_{0leq sleq t}{B(s)}$, but I was not successful so far.



      Any help would be greatly appreciated!







      probability brownian-motion stopping-times






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 18 at 13:31







      John Doe

















      asked Jan 18 at 12:49









      John DoeJohn Doe

      263




      263






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078206%2fintersection-exponent-for-one-dimensional-brownian-motion%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078206%2fintersection-exponent-for-one-dimensional-brownian-motion%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?