Laplace Transform Simultaneous Equations












0












$begingroup$


If I have the matrix down below how can I get rid of I1 so I can have everything in terms of I2?



$
begin{pmatrix}
(10+s) & (-s-6) \
(-s-6) & (s+dfrac{4}{s}+6) \
end{pmatrix}
$

$ begin{pmatrix}
I1\
I2\
end{pmatrix}
= begin{pmatrix}
dfrac{6}{s+3}\
dfrac{-6}{s}-1\
end{pmatrix} $



This is Laplace Transform so I can have everything in terms of $s$.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    If I have the matrix down below how can I get rid of I1 so I can have everything in terms of I2?



    $
    begin{pmatrix}
    (10+s) & (-s-6) \
    (-s-6) & (s+dfrac{4}{s}+6) \
    end{pmatrix}
    $

    $ begin{pmatrix}
    I1\
    I2\
    end{pmatrix}
    = begin{pmatrix}
    dfrac{6}{s+3}\
    dfrac{-6}{s}-1\
    end{pmatrix} $



    This is Laplace Transform so I can have everything in terms of $s$.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      If I have the matrix down below how can I get rid of I1 so I can have everything in terms of I2?



      $
      begin{pmatrix}
      (10+s) & (-s-6) \
      (-s-6) & (s+dfrac{4}{s}+6) \
      end{pmatrix}
      $

      $ begin{pmatrix}
      I1\
      I2\
      end{pmatrix}
      = begin{pmatrix}
      dfrac{6}{s+3}\
      dfrac{-6}{s}-1\
      end{pmatrix} $



      This is Laplace Transform so I can have everything in terms of $s$.










      share|cite|improve this question









      $endgroup$




      If I have the matrix down below how can I get rid of I1 so I can have everything in terms of I2?



      $
      begin{pmatrix}
      (10+s) & (-s-6) \
      (-s-6) & (s+dfrac{4}{s}+6) \
      end{pmatrix}
      $

      $ begin{pmatrix}
      I1\
      I2\
      end{pmatrix}
      = begin{pmatrix}
      dfrac{6}{s+3}\
      dfrac{-6}{s}-1\
      end{pmatrix} $



      This is Laplace Transform so I can have everything in terms of $s$.







      laplace-transform






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 21 at 0:48









      user154844user154844

      53




      53






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Reducing by row, observing that writing $a=s+6$, $b=frac{6}{s+3}$ and $c=-frac{6}{s}-1$ the augmented matrix becomes
          $$
          left(
          begin{array}{cc|c}
          4+a & -a & b\
          -a & frac{4}{s}+a & c
          end{array}
          right)xrightarrow{R_2leftrightarrow R_2+R_1}
          left(
          begin{array}{cc|c}
          4+a & -a & b\
          4 & frac{4}{s} & b+c
          end{array}
          right)\
          xrightarrow{R_1leftrightarrow frac{R_1}{4+a}}
          left(
          begin{array}{cc|c}
          1 & -frac{a}{4+a} & frac{b}{4+a}\
          4 & frac{4}{s} & b+c
          end{array}
          right)xrightarrow{R_2leftrightarrow R_2-4R_1}left(
          begin{array}{cc|c}
          1 & -frac{a}{4+a} & frac{b}{4+a}\
          0 & frac{4}{s} + frac{4a}{4+a} & b+c-frac{4b}{4+a}
          end{array}
          right)
          $$

          So you have



          begin{align*}
          I_2&=frac{b+c-frac{4b}{4+a}}{frac{4}{s} + frac{4a}{4+a} }\
          I_1&=frac{b}{4+a}+frac{a}{4+a}I_2
          end{align*}






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081350%2flaplace-transform-simultaneous-equations%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Reducing by row, observing that writing $a=s+6$, $b=frac{6}{s+3}$ and $c=-frac{6}{s}-1$ the augmented matrix becomes
            $$
            left(
            begin{array}{cc|c}
            4+a & -a & b\
            -a & frac{4}{s}+a & c
            end{array}
            right)xrightarrow{R_2leftrightarrow R_2+R_1}
            left(
            begin{array}{cc|c}
            4+a & -a & b\
            4 & frac{4}{s} & b+c
            end{array}
            right)\
            xrightarrow{R_1leftrightarrow frac{R_1}{4+a}}
            left(
            begin{array}{cc|c}
            1 & -frac{a}{4+a} & frac{b}{4+a}\
            4 & frac{4}{s} & b+c
            end{array}
            right)xrightarrow{R_2leftrightarrow R_2-4R_1}left(
            begin{array}{cc|c}
            1 & -frac{a}{4+a} & frac{b}{4+a}\
            0 & frac{4}{s} + frac{4a}{4+a} & b+c-frac{4b}{4+a}
            end{array}
            right)
            $$

            So you have



            begin{align*}
            I_2&=frac{b+c-frac{4b}{4+a}}{frac{4}{s} + frac{4a}{4+a} }\
            I_1&=frac{b}{4+a}+frac{a}{4+a}I_2
            end{align*}






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Reducing by row, observing that writing $a=s+6$, $b=frac{6}{s+3}$ and $c=-frac{6}{s}-1$ the augmented matrix becomes
              $$
              left(
              begin{array}{cc|c}
              4+a & -a & b\
              -a & frac{4}{s}+a & c
              end{array}
              right)xrightarrow{R_2leftrightarrow R_2+R_1}
              left(
              begin{array}{cc|c}
              4+a & -a & b\
              4 & frac{4}{s} & b+c
              end{array}
              right)\
              xrightarrow{R_1leftrightarrow frac{R_1}{4+a}}
              left(
              begin{array}{cc|c}
              1 & -frac{a}{4+a} & frac{b}{4+a}\
              4 & frac{4}{s} & b+c
              end{array}
              right)xrightarrow{R_2leftrightarrow R_2-4R_1}left(
              begin{array}{cc|c}
              1 & -frac{a}{4+a} & frac{b}{4+a}\
              0 & frac{4}{s} + frac{4a}{4+a} & b+c-frac{4b}{4+a}
              end{array}
              right)
              $$

              So you have



              begin{align*}
              I_2&=frac{b+c-frac{4b}{4+a}}{frac{4}{s} + frac{4a}{4+a} }\
              I_1&=frac{b}{4+a}+frac{a}{4+a}I_2
              end{align*}






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Reducing by row, observing that writing $a=s+6$, $b=frac{6}{s+3}$ and $c=-frac{6}{s}-1$ the augmented matrix becomes
                $$
                left(
                begin{array}{cc|c}
                4+a & -a & b\
                -a & frac{4}{s}+a & c
                end{array}
                right)xrightarrow{R_2leftrightarrow R_2+R_1}
                left(
                begin{array}{cc|c}
                4+a & -a & b\
                4 & frac{4}{s} & b+c
                end{array}
                right)\
                xrightarrow{R_1leftrightarrow frac{R_1}{4+a}}
                left(
                begin{array}{cc|c}
                1 & -frac{a}{4+a} & frac{b}{4+a}\
                4 & frac{4}{s} & b+c
                end{array}
                right)xrightarrow{R_2leftrightarrow R_2-4R_1}left(
                begin{array}{cc|c}
                1 & -frac{a}{4+a} & frac{b}{4+a}\
                0 & frac{4}{s} + frac{4a}{4+a} & b+c-frac{4b}{4+a}
                end{array}
                right)
                $$

                So you have



                begin{align*}
                I_2&=frac{b+c-frac{4b}{4+a}}{frac{4}{s} + frac{4a}{4+a} }\
                I_1&=frac{b}{4+a}+frac{a}{4+a}I_2
                end{align*}






                share|cite|improve this answer











                $endgroup$



                Reducing by row, observing that writing $a=s+6$, $b=frac{6}{s+3}$ and $c=-frac{6}{s}-1$ the augmented matrix becomes
                $$
                left(
                begin{array}{cc|c}
                4+a & -a & b\
                -a & frac{4}{s}+a & c
                end{array}
                right)xrightarrow{R_2leftrightarrow R_2+R_1}
                left(
                begin{array}{cc|c}
                4+a & -a & b\
                4 & frac{4}{s} & b+c
                end{array}
                right)\
                xrightarrow{R_1leftrightarrow frac{R_1}{4+a}}
                left(
                begin{array}{cc|c}
                1 & -frac{a}{4+a} & frac{b}{4+a}\
                4 & frac{4}{s} & b+c
                end{array}
                right)xrightarrow{R_2leftrightarrow R_2-4R_1}left(
                begin{array}{cc|c}
                1 & -frac{a}{4+a} & frac{b}{4+a}\
                0 & frac{4}{s} + frac{4a}{4+a} & b+c-frac{4b}{4+a}
                end{array}
                right)
                $$

                So you have



                begin{align*}
                I_2&=frac{b+c-frac{4b}{4+a}}{frac{4}{s} + frac{4a}{4+a} }\
                I_1&=frac{b}{4+a}+frac{a}{4+a}I_2
                end{align*}







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 22 at 22:40

























                answered Jan 22 at 21:41









                alexjoalexjo

                12.5k1430




                12.5k1430






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081350%2flaplace-transform-simultaneous-equations%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    What does “Dominus providebit” mean?