Is it true that $forall n in Bbb{N} : (sum_{i=1}^{n} a_{i} ) (sum_{i=1}^{n} frac{1}{a_{i}} ) ge n^2$ , if all...












1












$begingroup$



This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers





If $forall i in Bbb{N}: a_{i} in Bbb{R}^+$ , is it true that $forall n in Bbb{N} : big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n}
frac{1}{a_{i}}big) ge n^2$
?




I have been able to prove that this holds for $n=1$ , $n=2$, and $n=3$ using the following lemma:




Lemma 1: Let $a,b in Bbb{R}^+$. If $ab =1$ then $a+b ge 2$




For example, the case for $n=3$ can be proven like this:



Let $a,b,c in Bbb{R}^+$. Then we have:



$(a+b+c)big(frac{1}{a} + frac{1}{b} + frac{1}{c}big) = 1 + frac{a}{b} + frac{a}{c} + frac{b}{a} + 1 + frac{b}{c} + frac{c}{a} + frac{c}{b} + 1 $



$= 3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) $



By lemma 1, $big(frac{a}{b} + frac{b}{a}big) ge 2$, $ big(frac{a}{c} + frac{c}{a}big) ge 2$ and $big(frac{b}{c} + frac{c}{b}big) ge 2$ , therefore:



$3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) ge 3 + 2 + 2 +2 = 9 = 3^2 blacksquare $



However I'm not sure the generalized version for all natural $n$ is true. I can't come up with a counterexample and when I try to prove it by induction I get stuck.



Here is my attempt:



Let $P(n)::big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n} frac{1}{a_{i}}big) ge n^2$



Base case: $big(sum_{i=1}^{1}a_{i}big) big(sum_{i=1}^{1} frac{1}{a_{i}}big) = a_{1} frac{1}{a_{1}} = 1 = 1^2$ , so $P(1)$ is true.



Inductive hypothesis: I assume $P(n)$ is true.



Inductive step:



$$left(sum_{i=1}^{n+1}a_{i}right) left(sum_{i=1}^{n+1} frac{1}{a_{i}}right) = left[left(sum_{i=1}^{n}a_{i}right) + a_{n+1}right] left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$



$$=left(sum_{i=1}^{n}a_{i}right) left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right] + a_{n+1} left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$



$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +a_{n+1} frac{1}{a_{n+1}}$$



$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +1 $$



$$underbrace{ge}_{IH} n^2 + left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) + 1$$



And here I don't know what to do with the $big( sum_{i=1}^{n}a_{i} big) frac{1}{a_{n+1}} + a_{n+1} big(sum_{i=1}^{n} frac{1}{a_{i}}big)$ term.



Is this inequality true? If it is, how can I prove it? If it isn't, can anyone show me a counterexample?










share|cite|improve this question











$endgroup$



marked as duplicate by Martin R, Did, José Carlos Santos, Martin Sleziak, RRL Jan 21 at 17:16


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
    $endgroup$
    – Martin R
    Jan 21 at 8:22


















1












$begingroup$



This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers





If $forall i in Bbb{N}: a_{i} in Bbb{R}^+$ , is it true that $forall n in Bbb{N} : big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n}
frac{1}{a_{i}}big) ge n^2$
?




I have been able to prove that this holds for $n=1$ , $n=2$, and $n=3$ using the following lemma:




Lemma 1: Let $a,b in Bbb{R}^+$. If $ab =1$ then $a+b ge 2$




For example, the case for $n=3$ can be proven like this:



Let $a,b,c in Bbb{R}^+$. Then we have:



$(a+b+c)big(frac{1}{a} + frac{1}{b} + frac{1}{c}big) = 1 + frac{a}{b} + frac{a}{c} + frac{b}{a} + 1 + frac{b}{c} + frac{c}{a} + frac{c}{b} + 1 $



$= 3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) $



By lemma 1, $big(frac{a}{b} + frac{b}{a}big) ge 2$, $ big(frac{a}{c} + frac{c}{a}big) ge 2$ and $big(frac{b}{c} + frac{c}{b}big) ge 2$ , therefore:



$3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) ge 3 + 2 + 2 +2 = 9 = 3^2 blacksquare $



However I'm not sure the generalized version for all natural $n$ is true. I can't come up with a counterexample and when I try to prove it by induction I get stuck.



Here is my attempt:



Let $P(n)::big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n} frac{1}{a_{i}}big) ge n^2$



Base case: $big(sum_{i=1}^{1}a_{i}big) big(sum_{i=1}^{1} frac{1}{a_{i}}big) = a_{1} frac{1}{a_{1}} = 1 = 1^2$ , so $P(1)$ is true.



Inductive hypothesis: I assume $P(n)$ is true.



Inductive step:



$$left(sum_{i=1}^{n+1}a_{i}right) left(sum_{i=1}^{n+1} frac{1}{a_{i}}right) = left[left(sum_{i=1}^{n}a_{i}right) + a_{n+1}right] left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$



$$=left(sum_{i=1}^{n}a_{i}right) left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right] + a_{n+1} left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$



$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +a_{n+1} frac{1}{a_{n+1}}$$



$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +1 $$



$$underbrace{ge}_{IH} n^2 + left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) + 1$$



And here I don't know what to do with the $big( sum_{i=1}^{n}a_{i} big) frac{1}{a_{n+1}} + a_{n+1} big(sum_{i=1}^{n} frac{1}{a_{i}}big)$ term.



Is this inequality true? If it is, how can I prove it? If it isn't, can anyone show me a counterexample?










share|cite|improve this question











$endgroup$



marked as duplicate by Martin R, Did, José Carlos Santos, Martin Sleziak, RRL Jan 21 at 17:16


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
    $endgroup$
    – Martin R
    Jan 21 at 8:22
















1












1








1





$begingroup$



This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers





If $forall i in Bbb{N}: a_{i} in Bbb{R}^+$ , is it true that $forall n in Bbb{N} : big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n}
frac{1}{a_{i}}big) ge n^2$
?




I have been able to prove that this holds for $n=1$ , $n=2$, and $n=3$ using the following lemma:




Lemma 1: Let $a,b in Bbb{R}^+$. If $ab =1$ then $a+b ge 2$




For example, the case for $n=3$ can be proven like this:



Let $a,b,c in Bbb{R}^+$. Then we have:



$(a+b+c)big(frac{1}{a} + frac{1}{b} + frac{1}{c}big) = 1 + frac{a}{b} + frac{a}{c} + frac{b}{a} + 1 + frac{b}{c} + frac{c}{a} + frac{c}{b} + 1 $



$= 3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) $



By lemma 1, $big(frac{a}{b} + frac{b}{a}big) ge 2$, $ big(frac{a}{c} + frac{c}{a}big) ge 2$ and $big(frac{b}{c} + frac{c}{b}big) ge 2$ , therefore:



$3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) ge 3 + 2 + 2 +2 = 9 = 3^2 blacksquare $



However I'm not sure the generalized version for all natural $n$ is true. I can't come up with a counterexample and when I try to prove it by induction I get stuck.



Here is my attempt:



Let $P(n)::big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n} frac{1}{a_{i}}big) ge n^2$



Base case: $big(sum_{i=1}^{1}a_{i}big) big(sum_{i=1}^{1} frac{1}{a_{i}}big) = a_{1} frac{1}{a_{1}} = 1 = 1^2$ , so $P(1)$ is true.



Inductive hypothesis: I assume $P(n)$ is true.



Inductive step:



$$left(sum_{i=1}^{n+1}a_{i}right) left(sum_{i=1}^{n+1} frac{1}{a_{i}}right) = left[left(sum_{i=1}^{n}a_{i}right) + a_{n+1}right] left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$



$$=left(sum_{i=1}^{n}a_{i}right) left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right] + a_{n+1} left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$



$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +a_{n+1} frac{1}{a_{n+1}}$$



$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +1 $$



$$underbrace{ge}_{IH} n^2 + left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) + 1$$



And here I don't know what to do with the $big( sum_{i=1}^{n}a_{i} big) frac{1}{a_{n+1}} + a_{n+1} big(sum_{i=1}^{n} frac{1}{a_{i}}big)$ term.



Is this inequality true? If it is, how can I prove it? If it isn't, can anyone show me a counterexample?










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers





If $forall i in Bbb{N}: a_{i} in Bbb{R}^+$ , is it true that $forall n in Bbb{N} : big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n}
frac{1}{a_{i}}big) ge n^2$
?




I have been able to prove that this holds for $n=1$ , $n=2$, and $n=3$ using the following lemma:




Lemma 1: Let $a,b in Bbb{R}^+$. If $ab =1$ then $a+b ge 2$




For example, the case for $n=3$ can be proven like this:



Let $a,b,c in Bbb{R}^+$. Then we have:



$(a+b+c)big(frac{1}{a} + frac{1}{b} + frac{1}{c}big) = 1 + frac{a}{b} + frac{a}{c} + frac{b}{a} + 1 + frac{b}{c} + frac{c}{a} + frac{c}{b} + 1 $



$= 3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) $



By lemma 1, $big(frac{a}{b} + frac{b}{a}big) ge 2$, $ big(frac{a}{c} + frac{c}{a}big) ge 2$ and $big(frac{b}{c} + frac{c}{b}big) ge 2$ , therefore:



$3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) ge 3 + 2 + 2 +2 = 9 = 3^2 blacksquare $



However I'm not sure the generalized version for all natural $n$ is true. I can't come up with a counterexample and when I try to prove it by induction I get stuck.



Here is my attempt:



Let $P(n)::big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n} frac{1}{a_{i}}big) ge n^2$



Base case: $big(sum_{i=1}^{1}a_{i}big) big(sum_{i=1}^{1} frac{1}{a_{i}}big) = a_{1} frac{1}{a_{1}} = 1 = 1^2$ , so $P(1)$ is true.



Inductive hypothesis: I assume $P(n)$ is true.



Inductive step:



$$left(sum_{i=1}^{n+1}a_{i}right) left(sum_{i=1}^{n+1} frac{1}{a_{i}}right) = left[left(sum_{i=1}^{n}a_{i}right) + a_{n+1}right] left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$



$$=left(sum_{i=1}^{n}a_{i}right) left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right] + a_{n+1} left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$



$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +a_{n+1} frac{1}{a_{n+1}}$$



$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +1 $$



$$underbrace{ge}_{IH} n^2 + left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) + 1$$



And here I don't know what to do with the $big( sum_{i=1}^{n}a_{i} big) frac{1}{a_{n+1}} + a_{n+1} big(sum_{i=1}^{n} frac{1}{a_{i}}big)$ term.



Is this inequality true? If it is, how can I prove it? If it isn't, can anyone show me a counterexample?





This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers








algebra-precalculus inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 21 at 12:59









José Carlos Santos

163k22130233




163k22130233










asked Jan 21 at 0:25









IMKIMK

43138




43138




marked as duplicate by Martin R, Did, José Carlos Santos, Martin Sleziak, RRL Jan 21 at 17:16


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Martin R, Did, José Carlos Santos, Martin Sleziak, RRL Jan 21 at 17:16


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
    $endgroup$
    – Martin R
    Jan 21 at 8:22




















  • $begingroup$
    Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
    $endgroup$
    – Martin R
    Jan 21 at 8:22


















$begingroup$
Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
$endgroup$
– Martin R
Jan 21 at 8:22






$begingroup$
Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
$endgroup$
– Martin R
Jan 21 at 8:22












5 Answers
5






active

oldest

votes


















1












$begingroup$

Just apply
$$AMgeq GMgeq HM$$
$$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
Now the result is immediate.



Here equality holds iff all $a_i's$ are equal.



Hope it helps:)






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    HINT:



    The Cauchy-Schwarz Inequality
    begin{eqnarray*}
    (x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
    end{eqnarray*}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
      $endgroup$
      – Michael
      Jan 21 at 0:54



















    1












    $begingroup$

    Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Also, you can use AM-GM:
      $$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        Just for completeness:



        You may also show the inequality by direct calculation using





        • $x + frac{1}{x} geq 2$ for $x > 0$


        begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
        & = & sum_{i,j =1}^n frac{a_i}{a_j} \
        & = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
        & = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
        & color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
        & = & n + 2binom{n}{2} = n^2\
        end{eqnarray*}






        share|cite|improve this answer









        $endgroup$




















          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Just apply
          $$AMgeq GMgeq HM$$
          $$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
          Now the result is immediate.



          Here equality holds iff all $a_i's$ are equal.



          Hope it helps:)






          share|cite|improve this answer











          $endgroup$


















            1












            $begingroup$

            Just apply
            $$AMgeq GMgeq HM$$
            $$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
            Now the result is immediate.



            Here equality holds iff all $a_i's$ are equal.



            Hope it helps:)






            share|cite|improve this answer











            $endgroup$
















              1












              1








              1





              $begingroup$

              Just apply
              $$AMgeq GMgeq HM$$
              $$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
              Now the result is immediate.



              Here equality holds iff all $a_i's$ are equal.



              Hope it helps:)






              share|cite|improve this answer











              $endgroup$



              Just apply
              $$AMgeq GMgeq HM$$
              $$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
              Now the result is immediate.



              Here equality holds iff all $a_i's$ are equal.



              Hope it helps:)







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 21 at 1:05

























              answered Jan 21 at 0:59









              MartundMartund

              1,645213




              1,645213























                  1












                  $begingroup$

                  HINT:



                  The Cauchy-Schwarz Inequality
                  begin{eqnarray*}
                  (x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
                  end{eqnarray*}






                  share|cite|improve this answer











                  $endgroup$













                  • $begingroup$
                    Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
                    $endgroup$
                    – Michael
                    Jan 21 at 0:54
















                  1












                  $begingroup$

                  HINT:



                  The Cauchy-Schwarz Inequality
                  begin{eqnarray*}
                  (x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
                  end{eqnarray*}






                  share|cite|improve this answer











                  $endgroup$













                  • $begingroup$
                    Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
                    $endgroup$
                    – Michael
                    Jan 21 at 0:54














                  1












                  1








                  1





                  $begingroup$

                  HINT:



                  The Cauchy-Schwarz Inequality
                  begin{eqnarray*}
                  (x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
                  end{eqnarray*}






                  share|cite|improve this answer











                  $endgroup$



                  HINT:



                  The Cauchy-Schwarz Inequality
                  begin{eqnarray*}
                  (x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
                  end{eqnarray*}







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 21 at 11:41









                  Martin Sleziak

                  44.7k10119272




                  44.7k10119272










                  answered Jan 21 at 0:32









                  Donald SplutterwitDonald Splutterwit

                  22.8k21445




                  22.8k21445












                  • $begingroup$
                    Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
                    $endgroup$
                    – Michael
                    Jan 21 at 0:54


















                  • $begingroup$
                    Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
                    $endgroup$
                    – Michael
                    Jan 21 at 0:54
















                  $begingroup$
                  Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
                  $endgroup$
                  – Michael
                  Jan 21 at 0:54




                  $begingroup$
                  Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
                  $endgroup$
                  – Michael
                  Jan 21 at 0:54











                  1












                  $begingroup$

                  Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.






                      share|cite|improve this answer









                      $endgroup$



                      Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 21 at 12:09









                      user495573user495573

                      1214




                      1214























                          0












                          $begingroup$

                          Also, you can use AM-GM:
                          $$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            Also, you can use AM-GM:
                            $$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              Also, you can use AM-GM:
                              $$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$






                              share|cite|improve this answer









                              $endgroup$



                              Also, you can use AM-GM:
                              $$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 21 at 3:19









                              Michael RozenbergMichael Rozenberg

                              104k1892197




                              104k1892197























                                  0












                                  $begingroup$

                                  Just for completeness:



                                  You may also show the inequality by direct calculation using





                                  • $x + frac{1}{x} geq 2$ for $x > 0$


                                  begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
                                  & = & sum_{i,j =1}^n frac{a_i}{a_j} \
                                  & = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
                                  & = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
                                  & color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
                                  & = & n + 2binom{n}{2} = n^2\
                                  end{eqnarray*}






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Just for completeness:



                                    You may also show the inequality by direct calculation using





                                    • $x + frac{1}{x} geq 2$ for $x > 0$


                                    begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
                                    & = & sum_{i,j =1}^n frac{a_i}{a_j} \
                                    & = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
                                    & = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
                                    & color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
                                    & = & n + 2binom{n}{2} = n^2\
                                    end{eqnarray*}






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Just for completeness:



                                      You may also show the inequality by direct calculation using





                                      • $x + frac{1}{x} geq 2$ for $x > 0$


                                      begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
                                      & = & sum_{i,j =1}^n frac{a_i}{a_j} \
                                      & = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
                                      & = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
                                      & color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
                                      & = & n + 2binom{n}{2} = n^2\
                                      end{eqnarray*}






                                      share|cite|improve this answer









                                      $endgroup$



                                      Just for completeness:



                                      You may also show the inequality by direct calculation using





                                      • $x + frac{1}{x} geq 2$ for $x > 0$


                                      begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
                                      & = & sum_{i,j =1}^n frac{a_i}{a_j} \
                                      & = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
                                      & = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
                                      & color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
                                      & = & n + 2binom{n}{2} = n^2\
                                      end{eqnarray*}







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 21 at 7:29









                                      trancelocationtrancelocation

                                      12.2k1826




                                      12.2k1826















                                          Popular posts from this blog

                                          Mario Kart Wii

                                          The Binding of Isaac: Rebirth/Afterbirth

                                          What does “Dominus providebit” mean?