Is it true that $forall n in Bbb{N} : (sum_{i=1}^{n} a_{i} ) (sum_{i=1}^{n} frac{1}{a_{i}} ) ge n^2$ , if all...
$begingroup$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
If $forall i in Bbb{N}: a_{i} in Bbb{R}^+$ , is it true that $forall n in Bbb{N} : big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n}
frac{1}{a_{i}}big) ge n^2$ ?
I have been able to prove that this holds for $n=1$ , $n=2$, and $n=3$ using the following lemma:
Lemma 1: Let $a,b in Bbb{R}^+$. If $ab =1$ then $a+b ge 2$
For example, the case for $n=3$ can be proven like this:
Let $a,b,c in Bbb{R}^+$. Then we have:
$(a+b+c)big(frac{1}{a} + frac{1}{b} + frac{1}{c}big) = 1 + frac{a}{b} + frac{a}{c} + frac{b}{a} + 1 + frac{b}{c} + frac{c}{a} + frac{c}{b} + 1 $
$= 3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) $
By lemma 1, $big(frac{a}{b} + frac{b}{a}big) ge 2$, $ big(frac{a}{c} + frac{c}{a}big) ge 2$ and $big(frac{b}{c} + frac{c}{b}big) ge 2$ , therefore:
$3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) ge 3 + 2 + 2 +2 = 9 = 3^2 blacksquare $
However I'm not sure the generalized version for all natural $n$ is true. I can't come up with a counterexample and when I try to prove it by induction I get stuck.
Here is my attempt:
Let $P(n)::big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n} frac{1}{a_{i}}big) ge n^2$
Base case: $big(sum_{i=1}^{1}a_{i}big) big(sum_{i=1}^{1} frac{1}{a_{i}}big) = a_{1} frac{1}{a_{1}} = 1 = 1^2$ , so $P(1)$ is true.
Inductive hypothesis: I assume $P(n)$ is true.
Inductive step:
$$left(sum_{i=1}^{n+1}a_{i}right) left(sum_{i=1}^{n+1} frac{1}{a_{i}}right) = left[left(sum_{i=1}^{n}a_{i}right) + a_{n+1}right] left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$
$$=left(sum_{i=1}^{n}a_{i}right) left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right] + a_{n+1} left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$
$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +a_{n+1} frac{1}{a_{n+1}}$$
$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +1 $$
$$underbrace{ge}_{IH} n^2 + left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) + 1$$
And here I don't know what to do with the $big( sum_{i=1}^{n}a_{i} big) frac{1}{a_{n+1}} + a_{n+1} big(sum_{i=1}^{n} frac{1}{a_{i}}big)$ term.
Is this inequality true? If it is, how can I prove it? If it isn't, can anyone show me a counterexample?
algebra-precalculus inequality
$endgroup$
marked as duplicate by Martin R, Did, José Carlos Santos, Martin Sleziak, RRL Jan 21 at 17:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
If $forall i in Bbb{N}: a_{i} in Bbb{R}^+$ , is it true that $forall n in Bbb{N} : big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n}
frac{1}{a_{i}}big) ge n^2$ ?
I have been able to prove that this holds for $n=1$ , $n=2$, and $n=3$ using the following lemma:
Lemma 1: Let $a,b in Bbb{R}^+$. If $ab =1$ then $a+b ge 2$
For example, the case for $n=3$ can be proven like this:
Let $a,b,c in Bbb{R}^+$. Then we have:
$(a+b+c)big(frac{1}{a} + frac{1}{b} + frac{1}{c}big) = 1 + frac{a}{b} + frac{a}{c} + frac{b}{a} + 1 + frac{b}{c} + frac{c}{a} + frac{c}{b} + 1 $
$= 3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) $
By lemma 1, $big(frac{a}{b} + frac{b}{a}big) ge 2$, $ big(frac{a}{c} + frac{c}{a}big) ge 2$ and $big(frac{b}{c} + frac{c}{b}big) ge 2$ , therefore:
$3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) ge 3 + 2 + 2 +2 = 9 = 3^2 blacksquare $
However I'm not sure the generalized version for all natural $n$ is true. I can't come up with a counterexample and when I try to prove it by induction I get stuck.
Here is my attempt:
Let $P(n)::big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n} frac{1}{a_{i}}big) ge n^2$
Base case: $big(sum_{i=1}^{1}a_{i}big) big(sum_{i=1}^{1} frac{1}{a_{i}}big) = a_{1} frac{1}{a_{1}} = 1 = 1^2$ , so $P(1)$ is true.
Inductive hypothesis: I assume $P(n)$ is true.
Inductive step:
$$left(sum_{i=1}^{n+1}a_{i}right) left(sum_{i=1}^{n+1} frac{1}{a_{i}}right) = left[left(sum_{i=1}^{n}a_{i}right) + a_{n+1}right] left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$
$$=left(sum_{i=1}^{n}a_{i}right) left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right] + a_{n+1} left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$
$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +a_{n+1} frac{1}{a_{n+1}}$$
$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +1 $$
$$underbrace{ge}_{IH} n^2 + left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) + 1$$
And here I don't know what to do with the $big( sum_{i=1}^{n}a_{i} big) frac{1}{a_{n+1}} + a_{n+1} big(sum_{i=1}^{n} frac{1}{a_{i}}big)$ term.
Is this inequality true? If it is, how can I prove it? If it isn't, can anyone show me a counterexample?
algebra-precalculus inequality
$endgroup$
marked as duplicate by Martin R, Did, José Carlos Santos, Martin Sleziak, RRL Jan 21 at 17:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
$endgroup$
– Martin R
Jan 21 at 8:22
add a comment |
$begingroup$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
If $forall i in Bbb{N}: a_{i} in Bbb{R}^+$ , is it true that $forall n in Bbb{N} : big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n}
frac{1}{a_{i}}big) ge n^2$ ?
I have been able to prove that this holds for $n=1$ , $n=2$, and $n=3$ using the following lemma:
Lemma 1: Let $a,b in Bbb{R}^+$. If $ab =1$ then $a+b ge 2$
For example, the case for $n=3$ can be proven like this:
Let $a,b,c in Bbb{R}^+$. Then we have:
$(a+b+c)big(frac{1}{a} + frac{1}{b} + frac{1}{c}big) = 1 + frac{a}{b} + frac{a}{c} + frac{b}{a} + 1 + frac{b}{c} + frac{c}{a} + frac{c}{b} + 1 $
$= 3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) $
By lemma 1, $big(frac{a}{b} + frac{b}{a}big) ge 2$, $ big(frac{a}{c} + frac{c}{a}big) ge 2$ and $big(frac{b}{c} + frac{c}{b}big) ge 2$ , therefore:
$3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) ge 3 + 2 + 2 +2 = 9 = 3^2 blacksquare $
However I'm not sure the generalized version for all natural $n$ is true. I can't come up with a counterexample and when I try to prove it by induction I get stuck.
Here is my attempt:
Let $P(n)::big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n} frac{1}{a_{i}}big) ge n^2$
Base case: $big(sum_{i=1}^{1}a_{i}big) big(sum_{i=1}^{1} frac{1}{a_{i}}big) = a_{1} frac{1}{a_{1}} = 1 = 1^2$ , so $P(1)$ is true.
Inductive hypothesis: I assume $P(n)$ is true.
Inductive step:
$$left(sum_{i=1}^{n+1}a_{i}right) left(sum_{i=1}^{n+1} frac{1}{a_{i}}right) = left[left(sum_{i=1}^{n}a_{i}right) + a_{n+1}right] left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$
$$=left(sum_{i=1}^{n}a_{i}right) left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right] + a_{n+1} left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$
$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +a_{n+1} frac{1}{a_{n+1}}$$
$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +1 $$
$$underbrace{ge}_{IH} n^2 + left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) + 1$$
And here I don't know what to do with the $big( sum_{i=1}^{n}a_{i} big) frac{1}{a_{n+1}} + a_{n+1} big(sum_{i=1}^{n} frac{1}{a_{i}}big)$ term.
Is this inequality true? If it is, how can I prove it? If it isn't, can anyone show me a counterexample?
algebra-precalculus inequality
$endgroup$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
If $forall i in Bbb{N}: a_{i} in Bbb{R}^+$ , is it true that $forall n in Bbb{N} : big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n}
frac{1}{a_{i}}big) ge n^2$ ?
I have been able to prove that this holds for $n=1$ , $n=2$, and $n=3$ using the following lemma:
Lemma 1: Let $a,b in Bbb{R}^+$. If $ab =1$ then $a+b ge 2$
For example, the case for $n=3$ can be proven like this:
Let $a,b,c in Bbb{R}^+$. Then we have:
$(a+b+c)big(frac{1}{a} + frac{1}{b} + frac{1}{c}big) = 1 + frac{a}{b} + frac{a}{c} + frac{b}{a} + 1 + frac{b}{c} + frac{c}{a} + frac{c}{b} + 1 $
$= 3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) $
By lemma 1, $big(frac{a}{b} + frac{b}{a}big) ge 2$, $ big(frac{a}{c} + frac{c}{a}big) ge 2$ and $big(frac{b}{c} + frac{c}{b}big) ge 2$ , therefore:
$3 + big(frac{a}{b} + frac{b}{a}big) + big(frac{a}{c} + frac{c}{a}big) + big(frac{b}{c} + frac{c}{b}big) ge 3 + 2 + 2 +2 = 9 = 3^2 blacksquare $
However I'm not sure the generalized version for all natural $n$ is true. I can't come up with a counterexample and when I try to prove it by induction I get stuck.
Here is my attempt:
Let $P(n)::big(sum_{i=1}^{n}a_{i}big) big(sum_{i=1}^{n} frac{1}{a_{i}}big) ge n^2$
Base case: $big(sum_{i=1}^{1}a_{i}big) big(sum_{i=1}^{1} frac{1}{a_{i}}big) = a_{1} frac{1}{a_{1}} = 1 = 1^2$ , so $P(1)$ is true.
Inductive hypothesis: I assume $P(n)$ is true.
Inductive step:
$$left(sum_{i=1}^{n+1}a_{i}right) left(sum_{i=1}^{n+1} frac{1}{a_{i}}right) = left[left(sum_{i=1}^{n}a_{i}right) + a_{n+1}right] left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$
$$=left(sum_{i=1}^{n}a_{i}right) left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right] + a_{n+1} left[left(sum_{i=1}^{n} frac{1}{a_{i}}right) + frac{1}{a_{n+1}}right]$$
$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +a_{n+1} frac{1}{a_{n+1}}$$
$$=left(sum_{i=1}^{n}a_{i}right)left(sum_{i=1}^{n} frac{1}{a_{i}}right) +left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) +1 $$
$$underbrace{ge}_{IH} n^2 + left(sum_{i=1}^{n}a_{i}right) frac{1}{a_{n+1}} + a_{n+1} left(sum_{i=1}^{n} frac{1}{a_{i}}right) + 1$$
And here I don't know what to do with the $big( sum_{i=1}^{n}a_{i} big) frac{1}{a_{n+1}} + a_{n+1} big(sum_{i=1}^{n} frac{1}{a_{i}}big)$ term.
Is this inequality true? If it is, how can I prove it? If it isn't, can anyone show me a counterexample?
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
algebra-precalculus inequality
algebra-precalculus inequality
edited Jan 21 at 12:59
José Carlos Santos
163k22130233
163k22130233
asked Jan 21 at 0:25
IMKIMK
43138
43138
marked as duplicate by Martin R, Did, José Carlos Santos, Martin Sleziak, RRL Jan 21 at 17:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Martin R, Did, José Carlos Santos, Martin Sleziak, RRL Jan 21 at 17:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
$endgroup$
– Martin R
Jan 21 at 8:22
add a comment |
$begingroup$
Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
$endgroup$
– Martin R
Jan 21 at 8:22
$begingroup$
Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
$endgroup$
– Martin R
Jan 21 at 8:22
$begingroup$
Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
$endgroup$
– Martin R
Jan 21 at 8:22
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Just apply
$$AMgeq GMgeq HM$$
$$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
Now the result is immediate.
Here equality holds iff all $a_i's$ are equal.
Hope it helps:)
$endgroup$
add a comment |
$begingroup$
HINT:
The Cauchy-Schwarz Inequality
begin{eqnarray*}
(x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
end{eqnarray*}
$endgroup$
$begingroup$
Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
$endgroup$
– Michael
Jan 21 at 0:54
add a comment |
$begingroup$
Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.
$endgroup$
add a comment |
$begingroup$
Also, you can use AM-GM:
$$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$
$endgroup$
add a comment |
$begingroup$
Just for completeness:
You may also show the inequality by direct calculation using
$x + frac{1}{x} geq 2$ for $x > 0$
begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
& = & sum_{i,j =1}^n frac{a_i}{a_j} \
& = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
& = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
& color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
& = & n + 2binom{n}{2} = n^2\
end{eqnarray*}
$endgroup$
add a comment |
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Just apply
$$AMgeq GMgeq HM$$
$$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
Now the result is immediate.
Here equality holds iff all $a_i's$ are equal.
Hope it helps:)
$endgroup$
add a comment |
$begingroup$
Just apply
$$AMgeq GMgeq HM$$
$$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
Now the result is immediate.
Here equality holds iff all $a_i's$ are equal.
Hope it helps:)
$endgroup$
add a comment |
$begingroup$
Just apply
$$AMgeq GMgeq HM$$
$$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
Now the result is immediate.
Here equality holds iff all $a_i's$ are equal.
Hope it helps:)
$endgroup$
Just apply
$$AMgeq GMgeq HM$$
$$Longrightarrow frac{sum_{i=1}^n a_i}{n}geq frac{n}{sum_{i=1}^nfrac{1}{a_i}}$$
Now the result is immediate.
Here equality holds iff all $a_i's$ are equal.
Hope it helps:)
edited Jan 21 at 1:05
answered Jan 21 at 0:59
MartundMartund
1,645213
1,645213
add a comment |
add a comment |
$begingroup$
HINT:
The Cauchy-Schwarz Inequality
begin{eqnarray*}
(x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
end{eqnarray*}
$endgroup$
$begingroup$
Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
$endgroup$
– Michael
Jan 21 at 0:54
add a comment |
$begingroup$
HINT:
The Cauchy-Schwarz Inequality
begin{eqnarray*}
(x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
end{eqnarray*}
$endgroup$
$begingroup$
Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
$endgroup$
– Michael
Jan 21 at 0:54
add a comment |
$begingroup$
HINT:
The Cauchy-Schwarz Inequality
begin{eqnarray*}
(x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
end{eqnarray*}
$endgroup$
HINT:
The Cauchy-Schwarz Inequality
begin{eqnarray*}
(x_1^2+ cdots +x_n^2) (y_1^2+ cdots +y_n^2) geq (x_1 y_1+ cdots +x_n y_n)^2
end{eqnarray*}
edited Jan 21 at 11:41
Martin Sleziak
44.7k10119272
44.7k10119272
answered Jan 21 at 0:32
Donald SplutterwitDonald Splutterwit
22.8k21445
22.8k21445
$begingroup$
Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
$endgroup$
– Michael
Jan 21 at 0:54
add a comment |
$begingroup$
Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
$endgroup$
– Michael
Jan 21 at 0:54
$begingroup$
Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
$endgroup$
– Michael
Jan 21 at 0:54
$begingroup$
Nice answer. I was thinking of another way: Use Jensen’s inequality on $frac{1}{n}sum_{i =1}^{n}1/a_i$.
$endgroup$
– Michael
Jan 21 at 0:54
add a comment |
$begingroup$
Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.
$endgroup$
add a comment |
$begingroup$
Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.
$endgroup$
add a comment |
$begingroup$
Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.
$endgroup$
Well you could just use AM-HM, Cauchy-Schwarz, Chebyshev or the rearrangement inequality or the like. However, I suppose the point of this exercise is to prove AM-HM so let's continue with your efforts. To use induction we need to show that $$A = frac{1}{a_{n+1}} sum_{i=1}^{n} a_i + a_{n+1}sum_{i=1}^{n} frac{1}{a_i} ge 2n.$$ It's not hard to show that $x+yge2sqrt{xy}$, hence $$A ge 2sqrt{(sum_{i=1}^{n} a_i)(sum_{i=1}^{n} frac{1}{a_i})}.$$ So, by induction hypothesis, $A ge 2n$. That's it.
answered Jan 21 at 12:09
user495573user495573
1214
1214
add a comment |
add a comment |
$begingroup$
Also, you can use AM-GM:
$$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$
$endgroup$
add a comment |
$begingroup$
Also, you can use AM-GM:
$$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$
$endgroup$
add a comment |
$begingroup$
Also, you can use AM-GM:
$$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$
$endgroup$
Also, you can use AM-GM:
$$sum_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}geq nsqrt[n]{prod_{k=1}^na_k}cdot frac{n}{sqrt[n]{prodlimits_{k=1}^na_k}}=n^2.$$
answered Jan 21 at 3:19
Michael RozenbergMichael Rozenberg
104k1892197
104k1892197
add a comment |
add a comment |
$begingroup$
Just for completeness:
You may also show the inequality by direct calculation using
$x + frac{1}{x} geq 2$ for $x > 0$
begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
& = & sum_{i,j =1}^n frac{a_i}{a_j} \
& = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
& = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
& color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
& = & n + 2binom{n}{2} = n^2\
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Just for completeness:
You may also show the inequality by direct calculation using
$x + frac{1}{x} geq 2$ for $x > 0$
begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
& = & sum_{i,j =1}^n frac{a_i}{a_j} \
& = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
& = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
& color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
& = & n + 2binom{n}{2} = n^2\
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Just for completeness:
You may also show the inequality by direct calculation using
$x + frac{1}{x} geq 2$ for $x > 0$
begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
& = & sum_{i,j =1}^n frac{a_i}{a_j} \
& = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
& = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
& color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
& = & n + 2binom{n}{2} = n^2\
end{eqnarray*}
$endgroup$
Just for completeness:
You may also show the inequality by direct calculation using
$x + frac{1}{x} geq 2$ for $x > 0$
begin{eqnarray*} left(sum_{i=1}^{n} a_{i} right) left(sum_{j=1}^{n} frac{1}{a_{j}} right)
& = & sum_{i,j =1}^n frac{a_i}{a_j} \
& = & sum_{stackrel{i,j =1}{color{blue}{i=j}}}^n frac{a_i}{a_j} + sum_{stackrel{i,j =1}{color{blue}{ineq j}}}^n frac{a_i}{a_j} \
& = & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n left(frac{a_i}{a_j} + frac{a_j}{a_i} right)\
& color{blue}{geq} & n + sum_{stackrel{i,j =1}{color{blue}{i< j}}}^n 2\
& = & n + 2binom{n}{2} = n^2\
end{eqnarray*}
answered Jan 21 at 7:29
trancelocationtrancelocation
12.2k1826
12.2k1826
add a comment |
add a comment |
$begingroup$
Also: math.stackexchange.com/q/1162430, math.stackexchange.com/q/1506405 – all found with Approach0
$endgroup$
– Martin R
Jan 21 at 8:22