Evaluate $int_0^1 frac1 {x^2+2x+3},mathrm dx$
$begingroup$
I first completed the square:
$$int_0^1 frac1 {2+(x+1)^2},mathrm dx$$
Made the substitution $x+1=sqrt2 tan u$. Thus $dx=sqrt2sec^2udu$ substituting this in and changing the limits (please check that I have done this bit right).
$$frac{sqrt2}{2}int_{tan^{-1}frac1{sqrt2}}^{tan^{-1}frac2{sqrt2}},mathrm du$$
after using the identity $tan^2u+1=sec^2u$ and factoring out the constants.
Clearly this leads to a horrible result with many decimal places. Since this is meant to be done without a calculator, I suspect that I have done something wrong. Please help.
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
I first completed the square:
$$int_0^1 frac1 {2+(x+1)^2},mathrm dx$$
Made the substitution $x+1=sqrt2 tan u$. Thus $dx=sqrt2sec^2udu$ substituting this in and changing the limits (please check that I have done this bit right).
$$frac{sqrt2}{2}int_{tan^{-1}frac1{sqrt2}}^{tan^{-1}frac2{sqrt2}},mathrm du$$
after using the identity $tan^2u+1=sec^2u$ and factoring out the constants.
Clearly this leads to a horrible result with many decimal places. Since this is meant to be done without a calculator, I suspect that I have done something wrong. Please help.
calculus integration definite-integrals
$endgroup$
$begingroup$
What's wrong with your approach? You're not going to get a nicer answer than something like $tan^{-1}sqrt{2}$.
$endgroup$
– vadim123
Dec 12 '14 at 18:15
add a comment |
$begingroup$
I first completed the square:
$$int_0^1 frac1 {2+(x+1)^2},mathrm dx$$
Made the substitution $x+1=sqrt2 tan u$. Thus $dx=sqrt2sec^2udu$ substituting this in and changing the limits (please check that I have done this bit right).
$$frac{sqrt2}{2}int_{tan^{-1}frac1{sqrt2}}^{tan^{-1}frac2{sqrt2}},mathrm du$$
after using the identity $tan^2u+1=sec^2u$ and factoring out the constants.
Clearly this leads to a horrible result with many decimal places. Since this is meant to be done without a calculator, I suspect that I have done something wrong. Please help.
calculus integration definite-integrals
$endgroup$
I first completed the square:
$$int_0^1 frac1 {2+(x+1)^2},mathrm dx$$
Made the substitution $x+1=sqrt2 tan u$. Thus $dx=sqrt2sec^2udu$ substituting this in and changing the limits (please check that I have done this bit right).
$$frac{sqrt2}{2}int_{tan^{-1}frac1{sqrt2}}^{tan^{-1}frac2{sqrt2}},mathrm du$$
after using the identity $tan^2u+1=sec^2u$ and factoring out the constants.
Clearly this leads to a horrible result with many decimal places. Since this is meant to be done without a calculator, I suspect that I have done something wrong. Please help.
calculus integration definite-integrals
calculus integration definite-integrals
edited Dec 12 '14 at 18:25
Iuʇǝƃɹɐʇoɹ
8,34723550
8,34723550
asked Dec 12 '14 at 18:08
RobChemRobChem
514412
514412
$begingroup$
What's wrong with your approach? You're not going to get a nicer answer than something like $tan^{-1}sqrt{2}$.
$endgroup$
– vadim123
Dec 12 '14 at 18:15
add a comment |
$begingroup$
What's wrong with your approach? You're not going to get a nicer answer than something like $tan^{-1}sqrt{2}$.
$endgroup$
– vadim123
Dec 12 '14 at 18:15
$begingroup$
What's wrong with your approach? You're not going to get a nicer answer than something like $tan^{-1}sqrt{2}$.
$endgroup$
– vadim123
Dec 12 '14 at 18:15
$begingroup$
What's wrong with your approach? You're not going to get a nicer answer than something like $tan^{-1}sqrt{2}$.
$endgroup$
– vadim123
Dec 12 '14 at 18:15
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
I don't understand what do you mean by horrible result
By proceeding with your solution or by evaluating indefinite integral and then applying limits we get
$$int frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}arctanleft(frac{x+1}{sqrt{2}}right)$$
$$int_0^1 frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}left[arctanleft(sqrt2 right)-arctanleft(frac{1}{sqrt{2}}right)right]$$
You can simplify this to $$frac{1}{sqrt{2}}operatorname {arccot}left(2 sqrt{2}right)$$
But it will still be a horrible result
$endgroup$
$begingroup$
$ arcsinfrac13/sqrt{2} $ .. is less horrible?
$endgroup$
– Narasimham
Dec 12 '14 at 19:08
$begingroup$
No, nothing wrong, thought 'simpler' looking numerator maybe.
$endgroup$
– Narasimham
Dec 12 '14 at 19:19
add a comment |
$begingroup$
we set $x+1=t$ and we get $dx=dt$ and our integral will be $frac{1}{2}intfrac{dt}{left(frac{t}{sqrt{2}}right)^2+1}$ and after $dt=sqrt{2}du$ we get
$$frac{1}{2}int frac{sqrt{2}du}{u^2+1}$$
$endgroup$
add a comment |
$begingroup$
Surprisingly we can take a very general approach here. Consider the function
$$I=I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}$$ With the requirement that $4ac>b^2$. We may compute this by comleting the square:
$$I=intfrac{mathrm dx}{aleft(x+frac{b}{2a}right)^2+g}$$
Where $g=c-frac{b^2}{4a}$. Then preforming the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$,
$$I=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
Which simplifies to
$$I=frac{2u}{sqrt{4ac-b^2}}$$
$$I(x;a,b,c)=frac{2}{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}},+C$$
So for your integral, we use $a=1,b=2,c=3$ to see that
$$int_0^1frac{mathrm dx}{x^2+2x+3}=I(1;1,2,3)-I(0;1,2,3)=frac1{sqrt2}operatorname{arccot}2sqrt2$$
Which is a very clean answer with infinite accuracy (as opposed to a decimal expansion)... What could be better?
Extra special Bit
If we define $$K_n=K(x;n;a,b,c)=intfrac{mathrm dx}{left[a(x+b)^2+cright]^{n+1}}$$
We can preform the substitution $w=x+b$ then integrate by parts with $mathrm dv=mathrm dw$ to see that $K_n$ satisfies the recurrence relation
$$K_n=frac{w}{2cn(aw^2+c)^n}+frac{2n-1}{2cn}K_{n-1}$$
With base case $K_0=I(w;a,0,c)$. Hence we have a solution to our recurrence:
$$K_n=frac1{4^nc^nsqrt{ac}}{2nchoose n}arctanleft[(x+b)sqrt{frac{a}{c}}right]+frac{x+b}{2c}sum_{k=0}^{n-1}frac{left[a(x+b)^2+cright]^{k-n}}{c^k(n-k)}prod_{i=1}^{k}frac{2n-2i+1}{2n-2i+2}$$
And if that in all of it's infinite precision is not beautiful, then I don't know what is.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1065246%2fevaluate-int-01-frac1-x22x3-mathrm-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I don't understand what do you mean by horrible result
By proceeding with your solution or by evaluating indefinite integral and then applying limits we get
$$int frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}arctanleft(frac{x+1}{sqrt{2}}right)$$
$$int_0^1 frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}left[arctanleft(sqrt2 right)-arctanleft(frac{1}{sqrt{2}}right)right]$$
You can simplify this to $$frac{1}{sqrt{2}}operatorname {arccot}left(2 sqrt{2}right)$$
But it will still be a horrible result
$endgroup$
$begingroup$
$ arcsinfrac13/sqrt{2} $ .. is less horrible?
$endgroup$
– Narasimham
Dec 12 '14 at 19:08
$begingroup$
No, nothing wrong, thought 'simpler' looking numerator maybe.
$endgroup$
– Narasimham
Dec 12 '14 at 19:19
add a comment |
$begingroup$
I don't understand what do you mean by horrible result
By proceeding with your solution or by evaluating indefinite integral and then applying limits we get
$$int frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}arctanleft(frac{x+1}{sqrt{2}}right)$$
$$int_0^1 frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}left[arctanleft(sqrt2 right)-arctanleft(frac{1}{sqrt{2}}right)right]$$
You can simplify this to $$frac{1}{sqrt{2}}operatorname {arccot}left(2 sqrt{2}right)$$
But it will still be a horrible result
$endgroup$
$begingroup$
$ arcsinfrac13/sqrt{2} $ .. is less horrible?
$endgroup$
– Narasimham
Dec 12 '14 at 19:08
$begingroup$
No, nothing wrong, thought 'simpler' looking numerator maybe.
$endgroup$
– Narasimham
Dec 12 '14 at 19:19
add a comment |
$begingroup$
I don't understand what do you mean by horrible result
By proceeding with your solution or by evaluating indefinite integral and then applying limits we get
$$int frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}arctanleft(frac{x+1}{sqrt{2}}right)$$
$$int_0^1 frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}left[arctanleft(sqrt2 right)-arctanleft(frac{1}{sqrt{2}}right)right]$$
You can simplify this to $$frac{1}{sqrt{2}}operatorname {arccot}left(2 sqrt{2}right)$$
But it will still be a horrible result
$endgroup$
I don't understand what do you mean by horrible result
By proceeding with your solution or by evaluating indefinite integral and then applying limits we get
$$int frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}arctanleft(frac{x+1}{sqrt{2}}right)$$
$$int_0^1 frac1 {2+(x+1)^2}dx=frac{1}{sqrt{2}}left[arctanleft(sqrt2 right)-arctanleft(frac{1}{sqrt{2}}right)right]$$
You can simplify this to $$frac{1}{sqrt{2}}operatorname {arccot}left(2 sqrt{2}right)$$
But it will still be a horrible result
edited Dec 12 '14 at 18:22
answered Dec 12 '14 at 18:15
IuʇǝƃɹɐʇoɹIuʇǝƃɹɐʇoɹ
8,34723550
8,34723550
$begingroup$
$ arcsinfrac13/sqrt{2} $ .. is less horrible?
$endgroup$
– Narasimham
Dec 12 '14 at 19:08
$begingroup$
No, nothing wrong, thought 'simpler' looking numerator maybe.
$endgroup$
– Narasimham
Dec 12 '14 at 19:19
add a comment |
$begingroup$
$ arcsinfrac13/sqrt{2} $ .. is less horrible?
$endgroup$
– Narasimham
Dec 12 '14 at 19:08
$begingroup$
No, nothing wrong, thought 'simpler' looking numerator maybe.
$endgroup$
– Narasimham
Dec 12 '14 at 19:19
$begingroup$
$ arcsinfrac13/sqrt{2} $ .. is less horrible?
$endgroup$
– Narasimham
Dec 12 '14 at 19:08
$begingroup$
$ arcsinfrac13/sqrt{2} $ .. is less horrible?
$endgroup$
– Narasimham
Dec 12 '14 at 19:08
$begingroup$
No, nothing wrong, thought 'simpler' looking numerator maybe.
$endgroup$
– Narasimham
Dec 12 '14 at 19:19
$begingroup$
No, nothing wrong, thought 'simpler' looking numerator maybe.
$endgroup$
– Narasimham
Dec 12 '14 at 19:19
add a comment |
$begingroup$
we set $x+1=t$ and we get $dx=dt$ and our integral will be $frac{1}{2}intfrac{dt}{left(frac{t}{sqrt{2}}right)^2+1}$ and after $dt=sqrt{2}du$ we get
$$frac{1}{2}int frac{sqrt{2}du}{u^2+1}$$
$endgroup$
add a comment |
$begingroup$
we set $x+1=t$ and we get $dx=dt$ and our integral will be $frac{1}{2}intfrac{dt}{left(frac{t}{sqrt{2}}right)^2+1}$ and after $dt=sqrt{2}du$ we get
$$frac{1}{2}int frac{sqrt{2}du}{u^2+1}$$
$endgroup$
add a comment |
$begingroup$
we set $x+1=t$ and we get $dx=dt$ and our integral will be $frac{1}{2}intfrac{dt}{left(frac{t}{sqrt{2}}right)^2+1}$ and after $dt=sqrt{2}du$ we get
$$frac{1}{2}int frac{sqrt{2}du}{u^2+1}$$
$endgroup$
we set $x+1=t$ and we get $dx=dt$ and our integral will be $frac{1}{2}intfrac{dt}{left(frac{t}{sqrt{2}}right)^2+1}$ and after $dt=sqrt{2}du$ we get
$$frac{1}{2}int frac{sqrt{2}du}{u^2+1}$$
answered Dec 12 '14 at 18:21
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
76.1k42866
76.1k42866
add a comment |
add a comment |
$begingroup$
Surprisingly we can take a very general approach here. Consider the function
$$I=I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}$$ With the requirement that $4ac>b^2$. We may compute this by comleting the square:
$$I=intfrac{mathrm dx}{aleft(x+frac{b}{2a}right)^2+g}$$
Where $g=c-frac{b^2}{4a}$. Then preforming the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$,
$$I=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
Which simplifies to
$$I=frac{2u}{sqrt{4ac-b^2}}$$
$$I(x;a,b,c)=frac{2}{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}},+C$$
So for your integral, we use $a=1,b=2,c=3$ to see that
$$int_0^1frac{mathrm dx}{x^2+2x+3}=I(1;1,2,3)-I(0;1,2,3)=frac1{sqrt2}operatorname{arccot}2sqrt2$$
Which is a very clean answer with infinite accuracy (as opposed to a decimal expansion)... What could be better?
Extra special Bit
If we define $$K_n=K(x;n;a,b,c)=intfrac{mathrm dx}{left[a(x+b)^2+cright]^{n+1}}$$
We can preform the substitution $w=x+b$ then integrate by parts with $mathrm dv=mathrm dw$ to see that $K_n$ satisfies the recurrence relation
$$K_n=frac{w}{2cn(aw^2+c)^n}+frac{2n-1}{2cn}K_{n-1}$$
With base case $K_0=I(w;a,0,c)$. Hence we have a solution to our recurrence:
$$K_n=frac1{4^nc^nsqrt{ac}}{2nchoose n}arctanleft[(x+b)sqrt{frac{a}{c}}right]+frac{x+b}{2c}sum_{k=0}^{n-1}frac{left[a(x+b)^2+cright]^{k-n}}{c^k(n-k)}prod_{i=1}^{k}frac{2n-2i+1}{2n-2i+2}$$
And if that in all of it's infinite precision is not beautiful, then I don't know what is.
$endgroup$
add a comment |
$begingroup$
Surprisingly we can take a very general approach here. Consider the function
$$I=I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}$$ With the requirement that $4ac>b^2$. We may compute this by comleting the square:
$$I=intfrac{mathrm dx}{aleft(x+frac{b}{2a}right)^2+g}$$
Where $g=c-frac{b^2}{4a}$. Then preforming the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$,
$$I=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
Which simplifies to
$$I=frac{2u}{sqrt{4ac-b^2}}$$
$$I(x;a,b,c)=frac{2}{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}},+C$$
So for your integral, we use $a=1,b=2,c=3$ to see that
$$int_0^1frac{mathrm dx}{x^2+2x+3}=I(1;1,2,3)-I(0;1,2,3)=frac1{sqrt2}operatorname{arccot}2sqrt2$$
Which is a very clean answer with infinite accuracy (as opposed to a decimal expansion)... What could be better?
Extra special Bit
If we define $$K_n=K(x;n;a,b,c)=intfrac{mathrm dx}{left[a(x+b)^2+cright]^{n+1}}$$
We can preform the substitution $w=x+b$ then integrate by parts with $mathrm dv=mathrm dw$ to see that $K_n$ satisfies the recurrence relation
$$K_n=frac{w}{2cn(aw^2+c)^n}+frac{2n-1}{2cn}K_{n-1}$$
With base case $K_0=I(w;a,0,c)$. Hence we have a solution to our recurrence:
$$K_n=frac1{4^nc^nsqrt{ac}}{2nchoose n}arctanleft[(x+b)sqrt{frac{a}{c}}right]+frac{x+b}{2c}sum_{k=0}^{n-1}frac{left[a(x+b)^2+cright]^{k-n}}{c^k(n-k)}prod_{i=1}^{k}frac{2n-2i+1}{2n-2i+2}$$
And if that in all of it's infinite precision is not beautiful, then I don't know what is.
$endgroup$
add a comment |
$begingroup$
Surprisingly we can take a very general approach here. Consider the function
$$I=I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}$$ With the requirement that $4ac>b^2$. We may compute this by comleting the square:
$$I=intfrac{mathrm dx}{aleft(x+frac{b}{2a}right)^2+g}$$
Where $g=c-frac{b^2}{4a}$. Then preforming the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$,
$$I=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
Which simplifies to
$$I=frac{2u}{sqrt{4ac-b^2}}$$
$$I(x;a,b,c)=frac{2}{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}},+C$$
So for your integral, we use $a=1,b=2,c=3$ to see that
$$int_0^1frac{mathrm dx}{x^2+2x+3}=I(1;1,2,3)-I(0;1,2,3)=frac1{sqrt2}operatorname{arccot}2sqrt2$$
Which is a very clean answer with infinite accuracy (as opposed to a decimal expansion)... What could be better?
Extra special Bit
If we define $$K_n=K(x;n;a,b,c)=intfrac{mathrm dx}{left[a(x+b)^2+cright]^{n+1}}$$
We can preform the substitution $w=x+b$ then integrate by parts with $mathrm dv=mathrm dw$ to see that $K_n$ satisfies the recurrence relation
$$K_n=frac{w}{2cn(aw^2+c)^n}+frac{2n-1}{2cn}K_{n-1}$$
With base case $K_0=I(w;a,0,c)$. Hence we have a solution to our recurrence:
$$K_n=frac1{4^nc^nsqrt{ac}}{2nchoose n}arctanleft[(x+b)sqrt{frac{a}{c}}right]+frac{x+b}{2c}sum_{k=0}^{n-1}frac{left[a(x+b)^2+cright]^{k-n}}{c^k(n-k)}prod_{i=1}^{k}frac{2n-2i+1}{2n-2i+2}$$
And if that in all of it's infinite precision is not beautiful, then I don't know what is.
$endgroup$
Surprisingly we can take a very general approach here. Consider the function
$$I=I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}$$ With the requirement that $4ac>b^2$. We may compute this by comleting the square:
$$I=intfrac{mathrm dx}{aleft(x+frac{b}{2a}right)^2+g}$$
Where $g=c-frac{b^2}{4a}$. Then preforming the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$,
$$I=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
Which simplifies to
$$I=frac{2u}{sqrt{4ac-b^2}}$$
$$I(x;a,b,c)=frac{2}{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}},+C$$
So for your integral, we use $a=1,b=2,c=3$ to see that
$$int_0^1frac{mathrm dx}{x^2+2x+3}=I(1;1,2,3)-I(0;1,2,3)=frac1{sqrt2}operatorname{arccot}2sqrt2$$
Which is a very clean answer with infinite accuracy (as opposed to a decimal expansion)... What could be better?
Extra special Bit
If we define $$K_n=K(x;n;a,b,c)=intfrac{mathrm dx}{left[a(x+b)^2+cright]^{n+1}}$$
We can preform the substitution $w=x+b$ then integrate by parts with $mathrm dv=mathrm dw$ to see that $K_n$ satisfies the recurrence relation
$$K_n=frac{w}{2cn(aw^2+c)^n}+frac{2n-1}{2cn}K_{n-1}$$
With base case $K_0=I(w;a,0,c)$. Hence we have a solution to our recurrence:
$$K_n=frac1{4^nc^nsqrt{ac}}{2nchoose n}arctanleft[(x+b)sqrt{frac{a}{c}}right]+frac{x+b}{2c}sum_{k=0}^{n-1}frac{left[a(x+b)^2+cright]^{k-n}}{c^k(n-k)}prod_{i=1}^{k}frac{2n-2i+1}{2n-2i+2}$$
And if that in all of it's infinite precision is not beautiful, then I don't know what is.
answered Jan 20 at 21:32
clathratusclathratus
4,593337
4,593337
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1065246%2fevaluate-int-01-frac1-x22x3-mathrm-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What's wrong with your approach? You're not going to get a nicer answer than something like $tan^{-1}sqrt{2}$.
$endgroup$
– vadim123
Dec 12 '14 at 18:15