Exponential function help.
$begingroup$
I have the following problem:
Give a formula for the function illustrated using a vertical shift of an exponential function. The two points marked on the graph are 𝐴=(−1,15) and B=(1,6). The red horizontal line is given by y=3 and is a horizontal asymptote of the function.
Can someone show me how to solve this problem?
Thanks
exponential-function graphing-functions
$endgroup$
add a comment |
$begingroup$
I have the following problem:
Give a formula for the function illustrated using a vertical shift of an exponential function. The two points marked on the graph are 𝐴=(−1,15) and B=(1,6). The red horizontal line is given by y=3 and is a horizontal asymptote of the function.
Can someone show me how to solve this problem?
Thanks
exponential-function graphing-functions
$endgroup$
add a comment |
$begingroup$
I have the following problem:
Give a formula for the function illustrated using a vertical shift of an exponential function. The two points marked on the graph are 𝐴=(−1,15) and B=(1,6). The red horizontal line is given by y=3 and is a horizontal asymptote of the function.
Can someone show me how to solve this problem?
Thanks
exponential-function graphing-functions
$endgroup$
I have the following problem:
Give a formula for the function illustrated using a vertical shift of an exponential function. The two points marked on the graph are 𝐴=(−1,15) and B=(1,6). The red horizontal line is given by y=3 and is a horizontal asymptote of the function.
Can someone show me how to solve this problem?
Thanks
exponential-function graphing-functions
exponential-function graphing-functions
asked Jan 21 at 0:07
NathanMNdz2NathanMNdz2
83
83
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Assume that $f(x)$ has the following form:
$$f(x) = a^{-bx +c} +3$$
The $+3$ is the necessary vertical offset for this function to have a horizontal asymptote at $y = 3$. The exponential function has a generally decreasing form which is required from the two points given.
We can then solve for $a$ and $b$ by using the solutions to $f(1)$ and $f(-1)$ as follows:
begin{align*}
a^{-b(1) + c} + 3 &= 6 \
-b + c &= log_a(3) \
c &= log_a(3) + b
end{align*}
begin{align*}
a^{-b(-1) + c} + 3 &= 15 \
b + c &= log_a(12) \
c &= log_a(12) - b
end{align*}
Using these two equations, we can find the following solutions:
begin{align*}
b &= log_a(2) \
c &= log_a(6)
end{align*}
So, we have the following:
$$f(x) = a^{-log_a(2)x +log_a(6)} +3$$
Which can be simplified in the following way:
begin{align*}
f(x) &= a^{-log_a(2)x +log_a(6)} +3 \
f(x) &= (a^{-log_a(2)})^xa^{log_a(6)} +3 \
f(x) &= (a^{log_a(frac{1}{2})})^xa^{log_a(6)} +3 \
f(x) &= left( frac{1}{2}right)^x(6) +3 \
f(x) &= 6left( frac{1}{2}right)^x +3 \
end{align*}
$endgroup$
add a comment |
$begingroup$
Substitute the points into the standard equation of the exponential function
$$mbox{$f(x) = amathrm{b}^x + k$}$$
You already know k = 3, so you get:
$$15 = amathrm{b}^{-1} + 3 ①$$
$$mbox{6 = ab + 3 --> b = $frac 3a$ ②}$$
sub ② into ①
$$mbox{12 = $frac {mathrm{a}^2}3$}$$
When a = 6, b = $frac 12$, When a = -6, b = -$frac 12$
Answer:
$$mbox{y = 6$mathrm{(frac 12)}^x$+ 3}$$
$$mbox{or}$$
$$mbox{y = -6$mathrm{(-frac 12)}^x$+ 3}$$
$$mbox{are both correct}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081304%2fexponential-function-help%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Assume that $f(x)$ has the following form:
$$f(x) = a^{-bx +c} +3$$
The $+3$ is the necessary vertical offset for this function to have a horizontal asymptote at $y = 3$. The exponential function has a generally decreasing form which is required from the two points given.
We can then solve for $a$ and $b$ by using the solutions to $f(1)$ and $f(-1)$ as follows:
begin{align*}
a^{-b(1) + c} + 3 &= 6 \
-b + c &= log_a(3) \
c &= log_a(3) + b
end{align*}
begin{align*}
a^{-b(-1) + c} + 3 &= 15 \
b + c &= log_a(12) \
c &= log_a(12) - b
end{align*}
Using these two equations, we can find the following solutions:
begin{align*}
b &= log_a(2) \
c &= log_a(6)
end{align*}
So, we have the following:
$$f(x) = a^{-log_a(2)x +log_a(6)} +3$$
Which can be simplified in the following way:
begin{align*}
f(x) &= a^{-log_a(2)x +log_a(6)} +3 \
f(x) &= (a^{-log_a(2)})^xa^{log_a(6)} +3 \
f(x) &= (a^{log_a(frac{1}{2})})^xa^{log_a(6)} +3 \
f(x) &= left( frac{1}{2}right)^x(6) +3 \
f(x) &= 6left( frac{1}{2}right)^x +3 \
end{align*}
$endgroup$
add a comment |
$begingroup$
Assume that $f(x)$ has the following form:
$$f(x) = a^{-bx +c} +3$$
The $+3$ is the necessary vertical offset for this function to have a horizontal asymptote at $y = 3$. The exponential function has a generally decreasing form which is required from the two points given.
We can then solve for $a$ and $b$ by using the solutions to $f(1)$ and $f(-1)$ as follows:
begin{align*}
a^{-b(1) + c} + 3 &= 6 \
-b + c &= log_a(3) \
c &= log_a(3) + b
end{align*}
begin{align*}
a^{-b(-1) + c} + 3 &= 15 \
b + c &= log_a(12) \
c &= log_a(12) - b
end{align*}
Using these two equations, we can find the following solutions:
begin{align*}
b &= log_a(2) \
c &= log_a(6)
end{align*}
So, we have the following:
$$f(x) = a^{-log_a(2)x +log_a(6)} +3$$
Which can be simplified in the following way:
begin{align*}
f(x) &= a^{-log_a(2)x +log_a(6)} +3 \
f(x) &= (a^{-log_a(2)})^xa^{log_a(6)} +3 \
f(x) &= (a^{log_a(frac{1}{2})})^xa^{log_a(6)} +3 \
f(x) &= left( frac{1}{2}right)^x(6) +3 \
f(x) &= 6left( frac{1}{2}right)^x +3 \
end{align*}
$endgroup$
add a comment |
$begingroup$
Assume that $f(x)$ has the following form:
$$f(x) = a^{-bx +c} +3$$
The $+3$ is the necessary vertical offset for this function to have a horizontal asymptote at $y = 3$. The exponential function has a generally decreasing form which is required from the two points given.
We can then solve for $a$ and $b$ by using the solutions to $f(1)$ and $f(-1)$ as follows:
begin{align*}
a^{-b(1) + c} + 3 &= 6 \
-b + c &= log_a(3) \
c &= log_a(3) + b
end{align*}
begin{align*}
a^{-b(-1) + c} + 3 &= 15 \
b + c &= log_a(12) \
c &= log_a(12) - b
end{align*}
Using these two equations, we can find the following solutions:
begin{align*}
b &= log_a(2) \
c &= log_a(6)
end{align*}
So, we have the following:
$$f(x) = a^{-log_a(2)x +log_a(6)} +3$$
Which can be simplified in the following way:
begin{align*}
f(x) &= a^{-log_a(2)x +log_a(6)} +3 \
f(x) &= (a^{-log_a(2)})^xa^{log_a(6)} +3 \
f(x) &= (a^{log_a(frac{1}{2})})^xa^{log_a(6)} +3 \
f(x) &= left( frac{1}{2}right)^x(6) +3 \
f(x) &= 6left( frac{1}{2}right)^x +3 \
end{align*}
$endgroup$
Assume that $f(x)$ has the following form:
$$f(x) = a^{-bx +c} +3$$
The $+3$ is the necessary vertical offset for this function to have a horizontal asymptote at $y = 3$. The exponential function has a generally decreasing form which is required from the two points given.
We can then solve for $a$ and $b$ by using the solutions to $f(1)$ and $f(-1)$ as follows:
begin{align*}
a^{-b(1) + c} + 3 &= 6 \
-b + c &= log_a(3) \
c &= log_a(3) + b
end{align*}
begin{align*}
a^{-b(-1) + c} + 3 &= 15 \
b + c &= log_a(12) \
c &= log_a(12) - b
end{align*}
Using these two equations, we can find the following solutions:
begin{align*}
b &= log_a(2) \
c &= log_a(6)
end{align*}
So, we have the following:
$$f(x) = a^{-log_a(2)x +log_a(6)} +3$$
Which can be simplified in the following way:
begin{align*}
f(x) &= a^{-log_a(2)x +log_a(6)} +3 \
f(x) &= (a^{-log_a(2)})^xa^{log_a(6)} +3 \
f(x) &= (a^{log_a(frac{1}{2})})^xa^{log_a(6)} +3 \
f(x) &= left( frac{1}{2}right)^x(6) +3 \
f(x) &= 6left( frac{1}{2}right)^x +3 \
end{align*}
edited Jan 21 at 1:01
answered Jan 21 at 0:36
GustavGustav
1469
1469
add a comment |
add a comment |
$begingroup$
Substitute the points into the standard equation of the exponential function
$$mbox{$f(x) = amathrm{b}^x + k$}$$
You already know k = 3, so you get:
$$15 = amathrm{b}^{-1} + 3 ①$$
$$mbox{6 = ab + 3 --> b = $frac 3a$ ②}$$
sub ② into ①
$$mbox{12 = $frac {mathrm{a}^2}3$}$$
When a = 6, b = $frac 12$, When a = -6, b = -$frac 12$
Answer:
$$mbox{y = 6$mathrm{(frac 12)}^x$+ 3}$$
$$mbox{or}$$
$$mbox{y = -6$mathrm{(-frac 12)}^x$+ 3}$$
$$mbox{are both correct}$$
$endgroup$
add a comment |
$begingroup$
Substitute the points into the standard equation of the exponential function
$$mbox{$f(x) = amathrm{b}^x + k$}$$
You already know k = 3, so you get:
$$15 = amathrm{b}^{-1} + 3 ①$$
$$mbox{6 = ab + 3 --> b = $frac 3a$ ②}$$
sub ② into ①
$$mbox{12 = $frac {mathrm{a}^2}3$}$$
When a = 6, b = $frac 12$, When a = -6, b = -$frac 12$
Answer:
$$mbox{y = 6$mathrm{(frac 12)}^x$+ 3}$$
$$mbox{or}$$
$$mbox{y = -6$mathrm{(-frac 12)}^x$+ 3}$$
$$mbox{are both correct}$$
$endgroup$
add a comment |
$begingroup$
Substitute the points into the standard equation of the exponential function
$$mbox{$f(x) = amathrm{b}^x + k$}$$
You already know k = 3, so you get:
$$15 = amathrm{b}^{-1} + 3 ①$$
$$mbox{6 = ab + 3 --> b = $frac 3a$ ②}$$
sub ② into ①
$$mbox{12 = $frac {mathrm{a}^2}3$}$$
When a = 6, b = $frac 12$, When a = -6, b = -$frac 12$
Answer:
$$mbox{y = 6$mathrm{(frac 12)}^x$+ 3}$$
$$mbox{or}$$
$$mbox{y = -6$mathrm{(-frac 12)}^x$+ 3}$$
$$mbox{are both correct}$$
$endgroup$
Substitute the points into the standard equation of the exponential function
$$mbox{$f(x) = amathrm{b}^x + k$}$$
You already know k = 3, so you get:
$$15 = amathrm{b}^{-1} + 3 ①$$
$$mbox{6 = ab + 3 --> b = $frac 3a$ ②}$$
sub ② into ①
$$mbox{12 = $frac {mathrm{a}^2}3$}$$
When a = 6, b = $frac 12$, When a = -6, b = -$frac 12$
Answer:
$$mbox{y = 6$mathrm{(frac 12)}^x$+ 3}$$
$$mbox{or}$$
$$mbox{y = -6$mathrm{(-frac 12)}^x$+ 3}$$
$$mbox{are both correct}$$
edited Jan 21 at 1:14
answered Jan 21 at 0:34
KevinKevin
326
326
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081304%2fexponential-function-help%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown