If a is small, then show that $[1/(1+a)]^3$ is nearly equal to $1-3a$.
$begingroup$
If a is small, then show that $dfrac{1}{(1+a)^3}$ is nearly equal to
$(1-3a)$. Also show that if $0<a<0.01$, then the error$<0.0007$.
Can we solve this without using calculus?
If so can anyone help me with the solution?
calculus
$endgroup$
|
show 6 more comments
$begingroup$
If a is small, then show that $dfrac{1}{(1+a)^3}$ is nearly equal to
$(1-3a)$. Also show that if $0<a<0.01$, then the error$<0.0007$.
Can we solve this without using calculus?
If so can anyone help me with the solution?
calculus
$endgroup$
1
$begingroup$
What do you mean, without using calculus?
$endgroup$
– Martigan
Jan 16 at 8:10
$begingroup$
Just write the expression for the error and plug in the value of $a$. ...
$endgroup$
– Matti P.
Jan 16 at 8:12
$begingroup$
Is $a$ assumed to be positive?
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:13
2
$begingroup$
en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Jan 16 at 8:15
$begingroup$
Wolfram alpha answer
$endgroup$
– farruhota
Jan 16 at 8:20
|
show 6 more comments
$begingroup$
If a is small, then show that $dfrac{1}{(1+a)^3}$ is nearly equal to
$(1-3a)$. Also show that if $0<a<0.01$, then the error$<0.0007$.
Can we solve this without using calculus?
If so can anyone help me with the solution?
calculus
$endgroup$
If a is small, then show that $dfrac{1}{(1+a)^3}$ is nearly equal to
$(1-3a)$. Also show that if $0<a<0.01$, then the error$<0.0007$.
Can we solve this without using calculus?
If so can anyone help me with the solution?
calculus
calculus
edited Jan 18 at 8:42
Jyrki Lahtonen
109k13169372
109k13169372
asked Jan 16 at 8:06
SaeeSaee
387
387
1
$begingroup$
What do you mean, without using calculus?
$endgroup$
– Martigan
Jan 16 at 8:10
$begingroup$
Just write the expression for the error and plug in the value of $a$. ...
$endgroup$
– Matti P.
Jan 16 at 8:12
$begingroup$
Is $a$ assumed to be positive?
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:13
2
$begingroup$
en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Jan 16 at 8:15
$begingroup$
Wolfram alpha answer
$endgroup$
– farruhota
Jan 16 at 8:20
|
show 6 more comments
1
$begingroup$
What do you mean, without using calculus?
$endgroup$
– Martigan
Jan 16 at 8:10
$begingroup$
Just write the expression for the error and plug in the value of $a$. ...
$endgroup$
– Matti P.
Jan 16 at 8:12
$begingroup$
Is $a$ assumed to be positive?
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:13
2
$begingroup$
en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Jan 16 at 8:15
$begingroup$
Wolfram alpha answer
$endgroup$
– farruhota
Jan 16 at 8:20
1
1
$begingroup$
What do you mean, without using calculus?
$endgroup$
– Martigan
Jan 16 at 8:10
$begingroup$
What do you mean, without using calculus?
$endgroup$
– Martigan
Jan 16 at 8:10
$begingroup$
Just write the expression for the error and plug in the value of $a$. ...
$endgroup$
– Matti P.
Jan 16 at 8:12
$begingroup$
Just write the expression for the error and plug in the value of $a$. ...
$endgroup$
– Matti P.
Jan 16 at 8:12
$begingroup$
Is $a$ assumed to be positive?
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:13
$begingroup$
Is $a$ assumed to be positive?
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:13
2
2
$begingroup$
en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Jan 16 at 8:15
$begingroup$
en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Jan 16 at 8:15
$begingroup$
Wolfram alpha answer
$endgroup$
– farruhota
Jan 16 at 8:20
$begingroup$
Wolfram alpha answer
$endgroup$
– farruhota
Jan 16 at 8:20
|
show 6 more comments
3 Answers
3
active
oldest
votes
$begingroup$
We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
a^3=0.0000001$$ which are very small . $Q.E.D.$
Just plug in the value you need to calculate error.
$endgroup$
add a comment |
$begingroup$
Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.
To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
frac1{(1+a)^3}-(1-3a)
&=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
&leleft{begin{array}{}
22a^2&text{if }age-frac12\
6a^2&text{if }age0
end{array}right.
end{align}
$$
since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.
If $0le ale0.01$, then the error is at most $0.0006$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075447%2fif-a-is-small-then-show-that-1-1a3-is-nearly-equal-to-1-3a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
a^3=0.0000001$$ which are very small . $Q.E.D.$
Just plug in the value you need to calculate error.
$endgroup$
add a comment |
$begingroup$
We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
a^3=0.0000001$$ which are very small . $Q.E.D.$
Just plug in the value you need to calculate error.
$endgroup$
add a comment |
$begingroup$
We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
a^3=0.0000001$$ which are very small . $Q.E.D.$
Just plug in the value you need to calculate error.
$endgroup$
We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
a^3=0.0000001$$ which are very small . $Q.E.D.$
Just plug in the value you need to calculate error.
edited Jan 18 at 9:26
answered Jan 18 at 8:57
KarthikKarthik
13012
13012
add a comment |
add a comment |
$begingroup$
Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.
To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.
$endgroup$
add a comment |
$begingroup$
Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.
To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.
$endgroup$
add a comment |
$begingroup$
Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.
To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.
$endgroup$
Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.
To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.
answered Jan 18 at 9:12
DohlemanDohleman
395112
395112
add a comment |
add a comment |
$begingroup$
$$
begin{align}
frac1{(1+a)^3}-(1-3a)
&=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
&leleft{begin{array}{}
22a^2&text{if }age-frac12\
6a^2&text{if }age0
end{array}right.
end{align}
$$
since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.
If $0le ale0.01$, then the error is at most $0.0006$.
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
frac1{(1+a)^3}-(1-3a)
&=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
&leleft{begin{array}{}
22a^2&text{if }age-frac12\
6a^2&text{if }age0
end{array}right.
end{align}
$$
since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.
If $0le ale0.01$, then the error is at most $0.0006$.
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
frac1{(1+a)^3}-(1-3a)
&=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
&leleft{begin{array}{}
22a^2&text{if }age-frac12\
6a^2&text{if }age0
end{array}right.
end{align}
$$
since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.
If $0le ale0.01$, then the error is at most $0.0006$.
$endgroup$
$$
begin{align}
frac1{(1+a)^3}-(1-3a)
&=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
&leleft{begin{array}{}
22a^2&text{if }age-frac12\
6a^2&text{if }age0
end{array}right.
end{align}
$$
since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.
If $0le ale0.01$, then the error is at most $0.0006$.
edited Jan 18 at 11:48
answered Jan 18 at 11:37
robjohn♦robjohn
267k27308631
267k27308631
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075447%2fif-a-is-small-then-show-that-1-1a3-is-nearly-equal-to-1-3a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What do you mean, without using calculus?
$endgroup$
– Martigan
Jan 16 at 8:10
$begingroup$
Just write the expression for the error and plug in the value of $a$. ...
$endgroup$
– Matti P.
Jan 16 at 8:12
$begingroup$
Is $a$ assumed to be positive?
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:13
2
$begingroup$
en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Jan 16 at 8:15
$begingroup$
Wolfram alpha answer
$endgroup$
– farruhota
Jan 16 at 8:20