If a is small, then show that $[1/(1+a)]^3$ is nearly equal to $1-3a$.












1












$begingroup$


If a is small, then show that $dfrac{1}{(1+a)^3}$ is nearly equal to
$(1-3a)$. Also show that if $0<a<0.01$, then the error$<0.0007$.



Can we solve this without using calculus?



If so can anyone help me with the solution?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What do you mean, without using calculus?
    $endgroup$
    – Martigan
    Jan 16 at 8:10










  • $begingroup$
    Just write the expression for the error and plug in the value of $a$. ...
    $endgroup$
    – Matti P.
    Jan 16 at 8:12










  • $begingroup$
    Is $a$ assumed to be positive?
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 16 at 8:13






  • 2




    $begingroup$
    en.wikipedia.org/wiki/Binomial_series
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 8:15










  • $begingroup$
    Wolfram alpha answer
    $endgroup$
    – farruhota
    Jan 16 at 8:20
















1












$begingroup$


If a is small, then show that $dfrac{1}{(1+a)^3}$ is nearly equal to
$(1-3a)$. Also show that if $0<a<0.01$, then the error$<0.0007$.



Can we solve this without using calculus?



If so can anyone help me with the solution?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What do you mean, without using calculus?
    $endgroup$
    – Martigan
    Jan 16 at 8:10










  • $begingroup$
    Just write the expression for the error and plug in the value of $a$. ...
    $endgroup$
    – Matti P.
    Jan 16 at 8:12










  • $begingroup$
    Is $a$ assumed to be positive?
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 16 at 8:13






  • 2




    $begingroup$
    en.wikipedia.org/wiki/Binomial_series
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 8:15










  • $begingroup$
    Wolfram alpha answer
    $endgroup$
    – farruhota
    Jan 16 at 8:20














1












1








1


1



$begingroup$


If a is small, then show that $dfrac{1}{(1+a)^3}$ is nearly equal to
$(1-3a)$. Also show that if $0<a<0.01$, then the error$<0.0007$.



Can we solve this without using calculus?



If so can anyone help me with the solution?










share|cite|improve this question











$endgroup$




If a is small, then show that $dfrac{1}{(1+a)^3}$ is nearly equal to
$(1-3a)$. Also show that if $0<a<0.01$, then the error$<0.0007$.



Can we solve this without using calculus?



If so can anyone help me with the solution?







calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 8:42









Jyrki Lahtonen

109k13169372




109k13169372










asked Jan 16 at 8:06









SaeeSaee

387




387








  • 1




    $begingroup$
    What do you mean, without using calculus?
    $endgroup$
    – Martigan
    Jan 16 at 8:10










  • $begingroup$
    Just write the expression for the error and plug in the value of $a$. ...
    $endgroup$
    – Matti P.
    Jan 16 at 8:12










  • $begingroup$
    Is $a$ assumed to be positive?
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 16 at 8:13






  • 2




    $begingroup$
    en.wikipedia.org/wiki/Binomial_series
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 8:15










  • $begingroup$
    Wolfram alpha answer
    $endgroup$
    – farruhota
    Jan 16 at 8:20














  • 1




    $begingroup$
    What do you mean, without using calculus?
    $endgroup$
    – Martigan
    Jan 16 at 8:10










  • $begingroup$
    Just write the expression for the error and plug in the value of $a$. ...
    $endgroup$
    – Matti P.
    Jan 16 at 8:12










  • $begingroup$
    Is $a$ assumed to be positive?
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 16 at 8:13






  • 2




    $begingroup$
    en.wikipedia.org/wiki/Binomial_series
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 8:15










  • $begingroup$
    Wolfram alpha answer
    $endgroup$
    – farruhota
    Jan 16 at 8:20








1




1




$begingroup$
What do you mean, without using calculus?
$endgroup$
– Martigan
Jan 16 at 8:10




$begingroup$
What do you mean, without using calculus?
$endgroup$
– Martigan
Jan 16 at 8:10












$begingroup$
Just write the expression for the error and plug in the value of $a$. ...
$endgroup$
– Matti P.
Jan 16 at 8:12




$begingroup$
Just write the expression for the error and plug in the value of $a$. ...
$endgroup$
– Matti P.
Jan 16 at 8:12












$begingroup$
Is $a$ assumed to be positive?
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:13




$begingroup$
Is $a$ assumed to be positive?
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:13




2




2




$begingroup$
en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Jan 16 at 8:15




$begingroup$
en.wikipedia.org/wiki/Binomial_series
$endgroup$
– lab bhattacharjee
Jan 16 at 8:15












$begingroup$
Wolfram alpha answer
$endgroup$
– farruhota
Jan 16 at 8:20




$begingroup$
Wolfram alpha answer
$endgroup$
– farruhota
Jan 16 at 8:20










3 Answers
3






active

oldest

votes


















1












$begingroup$

We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
a^3=0.0000001$$
which are very small . $Q.E.D.$

Just plug in the value you need to calculate error.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.



    To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      $$
      begin{align}
      frac1{(1+a)^3}-(1-3a)
      &=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
      &leleft{begin{array}{}
      22a^2&text{if }age-frac12\
      6a^2&text{if }age0
      end{array}right.
      end{align}
      $$

      since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.



      If $0le ale0.01$, then the error is at most $0.0006$.






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075447%2fif-a-is-small-then-show-that-1-1a3-is-nearly-equal-to-1-3a%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
        Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
        Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
        Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
        a^3=0.0000001$$
        which are very small . $Q.E.D.$

        Just plug in the value you need to calculate error.






        share|cite|improve this answer











        $endgroup$


















          1












          $begingroup$

          We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
          Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
          Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
          Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
          a^3=0.0000001$$
          which are very small . $Q.E.D.$

          Just plug in the value you need to calculate error.






          share|cite|improve this answer











          $endgroup$
















            1












            1








            1





            $begingroup$

            We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
            Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
            Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
            Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
            a^3=0.0000001$$
            which are very small . $Q.E.D.$

            Just plug in the value you need to calculate error.






            share|cite|improve this answer











            $endgroup$



            We know that $$(1+a)^3(1-a)^3=(1-a^2)^3$$
            Therefore $$frac{1}{(1+a)^3}=(1-a)^3/(1-a^2)^3approx (1-3a+3a^2-a^3)approx1-3a$$
            Now for small a we can neglect $a^2$ and$a^3$ that's because higher powers of a get very small when compared to 1 or a when a is small
            Example $$a=0.001$$ then$$ a^2=0.00001$$ and$$
            a^3=0.0000001$$
            which are very small . $Q.E.D.$

            Just plug in the value you need to calculate error.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 18 at 9:26

























            answered Jan 18 at 8:57









            KarthikKarthik

            13012




            13012























                1












                $begingroup$

                Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.



                To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.



                  To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.



                    To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.






                    share|cite|improve this answer









                    $endgroup$



                    Suppose $a$ is small. Then $(1+a)^x approx 1+xa$ holds and is known as the Binomial approximation. Thus $frac{1}{(1+a)^3} = (1+a)^{-3} approx 1+(-3)a = (1-3a)$.



                    To find the error, note that as $a rightarrow 0$, $frac{1}{(1+a)^3} rightarrow 1$ and $(1-3a) rightarrow 1$. When $a=0.01$, the error between the two expressions is $|frac{1}{(1+a)^3} - (1-3a)| = |frac{1}{[1+(0.01)]^3} - [1-3(0.01)]| approx (0.9706) - (0.9700) = 0.0006$, which is less than $0.0007$. Noting that the difference in the expressions is monotonically increasing in the interval $0<a<0.01$, we can say that the error is thus less than $0.0007$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 18 at 9:12









                    DohlemanDohleman

                    395112




                    395112























                        1












                        $begingroup$

                        $$
                        begin{align}
                        frac1{(1+a)^3}-(1-3a)
                        &=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
                        &leleft{begin{array}{}
                        22a^2&text{if }age-frac12\
                        6a^2&text{if }age0
                        end{array}right.
                        end{align}
                        $$

                        since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.



                        If $0le ale0.01$, then the error is at most $0.0006$.






                        share|cite|improve this answer











                        $endgroup$


















                          1












                          $begingroup$

                          $$
                          begin{align}
                          frac1{(1+a)^3}-(1-3a)
                          &=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
                          &leleft{begin{array}{}
                          22a^2&text{if }age-frac12\
                          6a^2&text{if }age0
                          end{array}right.
                          end{align}
                          $$

                          since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.



                          If $0le ale0.01$, then the error is at most $0.0006$.






                          share|cite|improve this answer











                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            $$
                            begin{align}
                            frac1{(1+a)^3}-(1-3a)
                            &=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
                            &leleft{begin{array}{}
                            22a^2&text{if }age-frac12\
                            6a^2&text{if }age0
                            end{array}right.
                            end{align}
                            $$

                            since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.



                            If $0le ale0.01$, then the error is at most $0.0006$.






                            share|cite|improve this answer











                            $endgroup$



                            $$
                            begin{align}
                            frac1{(1+a)^3}-(1-3a)
                            &=frac{6+8a+3a^2}{(1+a)^3}cdot a^2\[6pt]
                            &leleft{begin{array}{}
                            22a^2&text{if }age-frac12\
                            6a^2&text{if }age0
                            end{array}right.
                            end{align}
                            $$

                            since $frac{6+8a+3a^2}{(1+a)^3}=frac3{1+a}+frac2{(1+a)^2}+frac1{(1+a)^3}$ is decreasing for $agt-1$.



                            If $0le ale0.01$, then the error is at most $0.0006$.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 18 at 11:48

























                            answered Jan 18 at 11:37









                            robjohnrobjohn

                            267k27308631




                            267k27308631






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075447%2fif-a-is-small-then-show-that-1-1a3-is-nearly-equal-to-1-3a%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Mario Kart Wii

                                The Binding of Isaac: Rebirth/Afterbirth

                                What does “Dominus providebit” mean?